論文の概要: Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection
- arxiv url: http://arxiv.org/abs/2405.02134v1
- Date: Fri, 3 May 2024 14:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:36:11.044727
- Title: Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection
- Title(参考訳): 不確実性に基づく2階層選択による大規模言語モデルへの呼び出しの最適化
- Authors: Guillem Ramírez, Alexandra Birch, Ivan Titov,
- Abstract要約: 決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 80.63946798650653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Researchers and practitioners operating on a limited budget face the cost-performance trade-off dilemma. The challenging decision often centers on whether to use a large LLM with better performance or a smaller one with reduced costs. This has motivated recent research in the optimisation of LLM calls. Either a cascading strategy is used, where a smaller LLM or both are called sequentially, or a routing strategy is used, where only one model is ever called. Both scenarios are dependent on a decision criterion which is typically implemented by an extra neural model. In this work, we propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion. We compare our approach with both cascading and routing strategies using three different pairs of pre-trained small and large LLMs, on nine different tasks and against approaches that require an additional neural model. Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
- Abstract(参考訳): 限られた予算で作業する研究者や実践者は、コストパフォーマンスのトレードオフジレンマに直面します。
難しい決定は、しばしば、より優れた性能を持つ大きなLLMを使うか、より少ないコストで使用するかに焦点を当てる。
このことは、LLM呼び出しの最適化に関する最近の研究の動機となっている。
カスケード戦略を使用するか、より小さなLSMまたは両方を順次呼び出すか、あるいはルーティング戦略を使用するかのいずれかで、1つのモデルのみが呼び出される。
どちらのシナリオも、通常余分なニューラルモデルによって実装される決定基準に依存する。
本研究では,LLMの世代間の不確実性のみを意思決定基準として用いる,より単純な解を提案する。
我々は,3組の学習済み小型LLMと大規模LLMを用いたカスケードとルーティングの両手法を,9つのタスクで比較し,追加のニューラルモデルを必要とするアプローチと比較した。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
関連論文リスト
- SIKeD: Self-guided Iterative Knowledge Distillation for mathematical reasoning [49.29200323760457]
大きな言語モデル(LLM)は、推論スキルをより小さなモデルに転送することができる。
より小さなモデルは蒸留時に全ての戦略にLLM分布を適合させるほど表現力に乏しい。
この1つの戦略への依存は、より小さなモデルにおいて、望ましい戦略で困難な推論タスクを解決しようとするときに、課題となる。
論文 参考訳(メタデータ) (2024-10-24T09:29:18Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なタスクで顕著な成功を収めたため、人気が高まっている。
しかしながら、個々のLLMは、トレーニングバイアス、モデルサイズ、使用されるデータセットなどの要因のために、複雑なタスクに適用する場合に制限がある。
本稿では,入力クエリを大規模プールからLLMの最も適切なサブセットに誘導する新しいアルゴリズムであるSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models [46.959380978972206]
大規模言語モデル(LLM)学習における推論スケーリング法則と計算最適推論について検討する。
計算最適推論手法の理解と設計に向けた第一歩として,推論戦略のコストパフォーマンストレードオフについて検討した。
以上の結果から,Llemma-7Bのようなより小さなモデルでは,計算予算が同じであれば,より大きなモデルよりも優れた性能が得られることが示唆された。
論文 参考訳(メタデータ) (2024-08-01T17:16:04Z) - Efficient Sequential Decision Making with Large Language Models [19.083642464977224]
本稿では,大規模言語モデル(LLM)の成功を逐次意思決定に拡張することに焦点を当てる。
既存の取り組みは、 (i) 意思決定のための再訓練または微調整 LLM または (ii) 事前訓練された LLM の設計プロンプトのいずれかである。
本稿では,オンラインモデル選択アルゴリズムを活用してLLMエージェントを逐次意思決定に効率的に組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T22:13:22Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
本稿では,Large Language Models (LLMs) を用いた不確実性低減フレームワークを提案する。
LLMは、先進的な言語能力と、広範なデータサイエンスの専門知識を持たない人々に対して大きな利点をもたらす「従量制」モデルに便乗している。
我々は,本手法が効率的かつ効果的であることを示し,実世界のタスクに有望な応用を提供する。
論文 参考訳(メタデータ) (2024-01-07T09:06:58Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
漸進的強化学習における後悔を最小限に抑えるために,新しいモデルフリーアルゴリズムを提案する。
提案アルゴリズムは、2つのQ-ラーニングシーケンスの助けを借りて、初期設定された参照更新ルールを用いる。
初期の分散還元法の設計原理は、他のRL設定とは独立した関心を持つかもしれない。
論文 参考訳(メタデータ) (2021-10-09T21:13:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。