論文の概要: Efficient Sequential Decision Making with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.12125v1
- Date: Mon, 17 Jun 2024 22:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 23:37:50.958972
- Title: Efficient Sequential Decision Making with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた効率的な逐次決定法
- Authors: Dingyang Chen, Qi Zhang, Yinglun Zhu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の成功を逐次意思決定に拡張することに焦点を当てる。
既存の取り組みは、 (i) 意思決定のための再訓練または微調整 LLM または (ii) 事前訓練された LLM の設計プロンプトのいずれかである。
本稿では,オンラインモデル選択アルゴリズムを活用してLLMエージェントを逐次意思決定に効率的に組み込む手法を提案する。
- 参考スコア(独自算出の注目度): 19.083642464977224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on extending the success of large language models (LLMs) to sequential decision making. Existing efforts either (i) re-train or finetune LLMs for decision making, or (ii) design prompts for pretrained LLMs. The former approach suffers from the computational burden of gradient updates, and the latter approach does not show promising results. In this paper, we propose a new approach that leverages online model selection algorithms to efficiently incorporate LLMs agents into sequential decision making. Statistically, our approach significantly outperforms both traditional decision making algorithms and vanilla LLM agents. Computationally, our approach avoids the need for expensive gradient updates of LLMs, and throughout the decision making process, it requires only a small number of LLM calls. We conduct extensive experiments to verify the effectiveness of our proposed approach. As an example, on a large-scale Amazon dataset, our approach achieves more than a $6$x performance gain over baselines while calling LLMs in only $1.5$\% of the time steps.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の成功を逐次意思決定に拡張することに焦点を当てる。
既存の努力も。
一 意思決定のための再訓練又は微調整 LLM
(II)事前訓練LSMの設計プロンプト
前者のアプローチは勾配更新の計算負担に悩まされており、後者のアプローチは有望な結果を示さない。
本稿では,LLMエージェントを逐次決定に効率的に組み込むために,オンラインモデル選択アルゴリズムを活用する新しい手法を提案する。
統計的には,従来の意思決定アルゴリズムとバニラLSMエージェントの双方より有意に優れている。
提案手法は,LLMの高コスト勾配更新を回避し,意思決定プロセスを通じて,少数のLLM呼び出ししか必要としない。
提案手法の有効性を検証するため,広範囲な実験を行った。
例えば、大規模なAmazonデータセットでは、私たちのアプローチはベースラインよりも6ドル以上パフォーマンスが向上し、LCMをわずか1.5ドル\%の時間ステップで呼び出すことができます。
関連論文リスト
- Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction [37.12990710443406]
大規模言語モデル(LLM)に関する既存の研究は、多段階計画により情報抽出タスクを解くことができることを示している。
複雑な抽出タスクを分解して段階的に抽出することで,LLMの性能を効果的に向上させることができる。
本稿では,LLMに基づく情報抽出のための2段階多段階手法を提案し,多段階計画を実行するためにRLフレームワークを採用する。
論文 参考訳(メタデータ) (2024-06-17T12:11:01Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
報酬最適化のための新しいフレームワーク、価値拡張サンプリング(VAS)を提案する。
VASは、ポリシーと値関数を併用することなく、最適報酬最大化ポリシーを解く。
我々のアルゴリズムは、いくつかの報酬を作曲し、展開期間中に各報酬の幅を制御できる新しい能力を解き放ちます。
論文 参考訳(メタデータ) (2024-05-10T17:59:04Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。