Neural Context Flows for Meta-Learning of Dynamical Systems
- URL: http://arxiv.org/abs/2405.02154v4
- Date: Mon, 28 Oct 2024 21:17:26 GMT
- Title: Neural Context Flows for Meta-Learning of Dynamical Systems
- Authors: Roussel Desmond Nzoyem, David A. W. Barton, Tom Deakin,
- Abstract summary: We introduce Neural Context Flow (NCF), a Meta-Learning framework that includes uncertainty estimation.
NCF achieves state-of-the-art Out-of-Distribution performance on 5 out of 6 linear and non-linear benchmark problems.
Our findings highlight the potential implications of NCF for foundational models in the physical sciences.
- Score: 0.7373617024876724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Ordinary Differential Equations (NODEs) often struggle to adapt to new dynamic behaviors caused by parameter changes in the underlying system, even when these dynamics are similar to previously observed behaviors. This problem becomes more challenging when the changing parameters are unobserved, meaning their value or influence cannot be directly measured when collecting data. To address this issue, we introduce Neural Context Flow (NCF), a robust and interpretable Meta-Learning framework that includes uncertainty estimation. NCF uses higher-order Taylor expansion to enable contextual self-modulation, allowing context vectors to influence dynamics from other domains while also modulating themselves. After establishing convergence guarantees, we empirically test NCF and compare it to related adaptation methods. Our results show that NCF achieves state-of-the-art Out-of-Distribution performance on 5 out of 6 linear and non-linear benchmark problems. Through extensive experiments, we explore the flexible model architecture of NCF and the encoded representations within the learned context vectors. Our findings highlight the potential implications of NCF for foundational models in the physical sciences, offering a promising approach to improving the adaptability and generalization of NODEs in various scientific applications. Our code is openly available at \url{https://github.com/ddrous/ncflow}.
Related papers
- Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Physics Informed Constrained Learning of Dynamics from Static Data [8.346864633675414]
A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network.
Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems.
In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data.
arXiv Detail & Related papers (2025-04-17T06:06:53Z) - Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning [30.781578037476347]
We introduce a novel approach to modeling transformer architectures using highly flexible non-autonomous neural ordinary differential equations (ODEs)
Our proposed model parameterizes all weights of attention and feed-forward blocks through neural networks, expressing these weights as functions of a continuous layer index.
Our neural ODE transformer demonstrates performance comparable to or better than vanilla transformers across various configurations and datasets.
arXiv Detail & Related papers (2025-03-03T09:12:14Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
We develop a framework for identifying conjugate and non-conjugate training dynamics.
By leveraging advances in Koopman operator theory, we demonstrate that comparing Koopman eigenvalues can correctly identify a known equivalence between online mirror descent and online gradient descent.
We then utilize our approach to: (a) identify non-conjugate training dynamics between shallow and wide fully connected neural networks; (b) characterize the early phase of training dynamics in convolutional neural networks; (c) uncover non-conjugate training dynamics in Transformers that do and do not undergo grokking.
arXiv Detail & Related papers (2023-02-17T22:15:20Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z) - On the application of Physically-Guided Neural Networks with Internal
Variables to Continuum Problems [0.0]
We present Physically-Guided Neural Networks with Internal Variables (PGNNIV)
universal physical laws are used as constraints in the neural network, in such a way that some neuron values can be interpreted as internal state variables of the system.
This endows the network with unraveling capacity, as well as better predictive properties such as faster convergence, fewer data needs and additional noise filtering.
We extend this new methodology to continuum physical problems, showing again its predictive and explanatory capacities when only using measurable values in the training set.
arXiv Detail & Related papers (2020-11-23T13:06:52Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Go with the Flow: Adaptive Control for Neural ODEs [10.265713480189484]
We describe a new module called neurally controlled ODE (N-CODE) designed to improve the expressivity of NODEs.
N-CODE modules are dynamic variables governed by a trainable map from initial or current activation state.
A single module is sufficient for learning a distribution on non-autonomous flows that adaptively drive neural representations.
arXiv Detail & Related papers (2020-06-16T22:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.