論文の概要: How to Diversify any Personalized Recommender? A User-centric Pre-processing approach
- arxiv url: http://arxiv.org/abs/2405.02156v1
- Date: Fri, 03 May 2024 15:02:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 01:28:27.618430
- Title: How to Diversify any Personalized Recommender? A User-centric Pre-processing approach
- Title(参考訳): パーソナライズされたレコメンデーションの多様化 : ユーザ中心の事前処理アプローチ
- Authors: Manel Slokom, Laura Hollink,
- Abstract要約: 推薦性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we introduce a novel approach to improve the diversity of Top-N recommendations while maintaining recommendation performance. Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics. We personalize this strategy by selectively adding and removing a percentage of interactions from user profiles. This personalization ensures we remain closely aligned with user preferences while gradually introducing distribution shifts. Our pre-processing technique offers flexibility and can seamlessly integrate into any recommender architecture. To evaluate our approach, we run extensive experiments on two publicly available data sets for news and book recommendations. We test various standard and neural network-based recommender system algorithms. Our results show that our approach generates diverse recommendations, ensuring users are exposed to a wider range of items. Furthermore, leveraging pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data. Additionally, our approach promotes provider fairness by facilitating exposure to minority or niche categories.
- Abstract(参考訳): 本稿では,レコメンデーション性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
ユーザプロファイルからインタラクションのパーセンテージを選択的に追加・削除することで、この戦略をパーソナライズする。
このパーソナライゼーションは、徐々に配布シフトを導入しながら、ユーザの好みと密に一致し続けることを保証します。
我々の事前処理技術は柔軟性を提供し、どんな推奨アーキテクチャにもシームレスに統合できます。
提案手法を評価するため,ニュースと書籍の推薦のための2つの公開データセットについて広範な実験を行った。
我々は、様々な標準およびニューラルネットワークベースのレコメンデータシステムアルゴリズムをテストする。
提案手法は,多様なレコメンデーションを生成し,より広い範囲の項目にユーザをさらけ出すことを保証している。
さらに、事前処理されたデータをトレーニングに活用することで、元の未修正データでトレーニングされたものよりもパフォーマンスレベルに匹敵する、そして場合によっては、パフォーマンスレベルを達成することを推奨するシステムに繋がる。
さらに,本手法は,マイノリティカテゴリーやニッチカテゴリーへの露出を促進することによって,プロバイダの公平性を促進する。
関連論文リスト
- Context-aware adaptive personalised recommendation: a meta-hybrid [0.41436032949434404]
機械学習を用いて最適なアルゴリズムを予測するメタハイブリッドレコメンデータを提案する。
提案モデルに基づいて、どのレコメンデータがユーザに最も正確なレコメンデーションを提供するかを予測できる。
論文 参考訳(メタデータ) (2024-10-17T09:24:40Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
論文 参考訳(メタデータ) (2024-10-03T13:02:07Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
本稿では,コプラ関数による妥当性と多様性を組み合わせた新しいレコメンデーション戦略を提案する。
我々は,システムと対話しながらユーザから得た知識量のサロゲートとして多様性を利用する。
我々の戦略は、最先端のライバル数社を上回っている。
論文 参考訳(メタデータ) (2024-08-07T13:48:24Z) - Personalized Multi-task Training for Recommender System [80.23030752707916]
PMTRecは、様々な情報ソースから包括的ユーザ/イテム埋め込みを得るための、最初のパーソナライズされたマルチタスク学習アルゴリズムである。
我々の貢献は、レコメンデーションシステムにおけるパーソナライズされたマルチタスクトレーニングを促進するための新しい道を開く。
論文 参考訳(メタデータ) (2024-07-31T06:27:06Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
制御可能なテキストレコメンデーションのための新しい概念値ボトルネックモデル LACE を提案する。
LACEは、人間の読みやすい概念の簡潔なセットで各ユーザーを表現する。
ユーザ文書に基づいて概念のパーソナライズされた表現を学習する。
論文 参考訳(メタデータ) (2023-04-09T14:52:18Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Random Walks with Erasure: Diversifying Personalized Recommendations on
Social and Information Networks [4.007832851105161]
ユーザ・項目グラフのランダムウォーク探索を改良することにより,情報多様性の向上を目標とした新しい推薦フレームワークを開発した。
ソーシャルネットワーク上での政治コンテンツを推薦するために,まず,利用者と共有するコンテンツのイデオロギー的立場を推定する新しいモデルを提案する。
これらの推定位置に基づいて,新しいランダムウォークに基づくレコメンデーションアルゴリズムを用いて,多様なパーソナライズドレコメンデーションを生成する。
論文 参考訳(メタデータ) (2021-02-18T21:53:32Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSageはエンド・ツー・エンドのレコメンデーションシステムで、マルチモーダル・埋め込みを通じて各ユーザーを表現する。
オフラインおよびオンラインA/B実験を複数実施し,本手法が単一埋め込み法より有意に優れていることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:13:20Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。