Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations
- URL: http://arxiv.org/abs/2405.02171v1
- Date: Fri, 3 May 2024 15:20:30 GMT
- Title: Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations
- Authors: Zhilu Zhang, Ruohao Wang, Hongzhi Zhang, Wangmeng Zuo,
- Abstract summary: We consider two challenging issues in reference-based super-resolution (RefSR) for smartphone.
We propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms.
- Score: 61.448005005426666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment and then design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. Codes are available at https://github.com/cszhilu1998/SelfDZSR_PlusPlus.
Related papers
- ClearSR: Latent Low-Resolution Image Embeddings Help Diffusion-Based Real-World Super Resolution Models See Clearer [68.72454974431749]
We present ClearSR, a new method that can better take advantage of latent low-resolution image (LR) embeddings for diffusion-based real-world image super-resolution (Real-ISR)
Our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods.
arXiv Detail & Related papers (2024-10-18T08:35:57Z) - Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur
Estimation for Blind Image Super-Resolution [30.816546273417774]
We introduce two new datasets with out-of-focus blur, i.e., NYUv2-BSR and Cityscapes-BSR, to support further researches of blind SR with space-variant blur.
Based on the datasets, we design a novel Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics simultaneously.
arXiv Detail & Related papers (2023-04-07T08:40:31Z) - Reference-based Image and Video Super-Resolution via C2-Matching [100.0808130445653]
We propose C2-Matching, which performs explicit robust matching crossing transformation and resolution.
C2-Matching significantly outperforms state of the arts on the standard CUFED5 benchmark.
We also extend C2-Matching to Reference-based Video Super-Resolution task, where an image taken in a similar scene serves as the HR reference image.
arXiv Detail & Related papers (2022-12-19T16:15:02Z) - Self-Supervised Learning for Real-World Super-Resolution from Dual
Zoomed Observations [66.09210030518686]
We present a novel self-supervised learning approach for real-world RefSR from observations at dual camera zooms (SelfDZSR)
For the first issue, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the SR of the lesser zoomed (short-focus) image.
For the second issue, SelfDZSR learns a deep network to obtain the SR result of short-focal image and with the same resolution as the telephoto image.
arXiv Detail & Related papers (2022-03-02T13:30:56Z) - Dual-Camera Super-Resolution with Aligned Attention Modules [56.54073689003269]
We present a novel approach to reference-based super-resolution (RefSR) with the focus on dual-camera super-resolution (DCSR)
Our proposed method generalizes the standard patch-based feature matching with spatial alignment operations.
To bridge the domain gaps between real-world images and the training images, we propose a self-supervised domain adaptation strategy.
arXiv Detail & Related papers (2021-09-03T07:17:31Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
arXiv Detail & Related papers (2020-08-01T07:10:13Z) - HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of
Satellite Imagery [55.253395881190436]
Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem.
This is important for satellite monitoring of human impact on the planet.
We present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion.
arXiv Detail & Related papers (2020-02-15T22:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.