Imitation Learning in Discounted Linear MDPs without exploration assumptions
- URL: http://arxiv.org/abs/2405.02181v2
- Date: Fri, 23 Aug 2024 09:56:53 GMT
- Title: Imitation Learning in Discounted Linear MDPs without exploration assumptions
- Authors: Luca Viano, Stratis Skoulakis, Volkan Cevher,
- Abstract summary: We present a new algorithm for imitation learning in infinite horizon linear MDPs dubbed ILARL.
We improve the dependence on the desired accuracy $epsilon$ from $mathcalO(epsilon-5)$ to $mathcalO(epsilon-4)$.
Numerical experiments with linear function approximation shows that ILARL outperforms other commonly used algorithms.
- Score: 58.81226849657474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new algorithm for imitation learning in infinite horizon linear MDPs dubbed ILARL which greatly improves the bound on the number of trajectories that the learner needs to sample from the environment. In particular, we remove exploration assumptions required in previous works and we improve the dependence on the desired accuracy $\epsilon$ from $\mathcal{O}(\epsilon^{-5})$ to $\mathcal{O}(\epsilon^{-4})$. Our result relies on a connection between imitation learning and online learning in MDPs with adversarial losses. For the latter setting, we present the first result for infinite horizon linear MDP which may be of independent interest. Moreover, we are able to provide a strengthen result for the finite horizon case where we achieve $\mathcal{O}(\epsilon^{-2})$. Numerical experiments with linear function approximation shows that ILARL outperforms other commonly used algorithms.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - A Primal-Dual Algorithm for Offline Constrained Reinforcement Learning with Linear MDPs [18.449996575976993]
We propose a primal dual algorithm for offline RL with linear MDPs in the infinite-horizon discounted setting.
Our algorithm is the first computationally efficient algorithm in this setting that achieves sample complexity of $O(epsilon-2)$ with partial data coverage assumption.
We extend our algorithm to work in the offline constrained RL setting that enforces constraints on additional reward signals.
arXiv Detail & Related papers (2024-02-07T00:33:11Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
We study the low-rank MDPs with adversarially changed losses in the full-information feedback setting.
We propose a policy optimization-based algorithm POLO, and we prove that it attains the $widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee.
arXiv Detail & Related papers (2023-11-14T03:12:43Z) - Offline Primal-Dual Reinforcement Learning for Linear MDPs [16.782625445546273]
Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from a fixed dataset of transitions collected by another policy.
This paper proposes a primal-dual optimization method based on the linear programming formulation of RL.
arXiv Detail & Related papers (2023-05-22T11:45:23Z) - Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs [60.40452803295326]
We propose a new reward-free algorithm for learning linear Markov decision processes (MDPs)
At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward.
We show that our algorithm only needs to explore $tilde O( d2varepsilon-2)$ episodes to find an $varepsilon$-optimal policy.
arXiv Detail & Related papers (2023-03-17T17:53:28Z) - Locally Differentially Private Reinforcement Learning for Linear Mixture
Markov Decision Processes [78.27542864367821]
Reinforcement learning (RL) algorithms can be used to provide personalized services, which rely on users' private and sensitive data.
To protect the users' privacy, privacy-preserving RL algorithms are in demand.
We propose a novel $(varepsilon, delta)$-LDP algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture MDPs.
arXiv Detail & Related papers (2021-10-19T17:44:09Z) - Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation [95.80683238546499]
We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation.
We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $tildeO(dsqrtDT)$, where $d$ is the dimension of the feature mapping.
We also prove a matching lower bound $tildeOmega(dsqrtDT)$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors
arXiv Detail & Related papers (2021-02-15T02:08:39Z) - Tightening the Dependence on Horizon in the Sample Complexity of
Q-Learning [59.71676469100807]
This work sharpens the sample complexity of synchronous Q-learning to an order of $frac|mathcalS|| (1-gamma)4varepsilon2$ for any $0varepsilon 1$.
Our finding unveils the effectiveness of vanilla Q-learning, which matches that of speedy Q-learning without requiring extra computation and storage.
arXiv Detail & Related papers (2021-02-12T14:22:05Z) - Learning Infinite-horizon Average-reward MDPs with Linear Function
Approximation [44.374427255708135]
We develop new algorithms for learning Markov Decision Processes in an infinite-horizon average-reward setting with linear function approximation.
Using the optimism principle and assuming that the MDP has a linear structure, we first propose a computationally inefficient algorithm with optimal $widetildeO(sqrtT)$ regret.
Next, taking inspiration from adversarial linear bandits, we develop yet another efficient algorithm with $widetildeO(sqrtT)$ regret.
arXiv Detail & Related papers (2020-07-23T08:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.