Optimistically Optimistic Exploration for Provably Efficient Infinite-Horizon Reinforcement and Imitation Learning
- URL: http://arxiv.org/abs/2502.13900v1
- Date: Wed, 19 Feb 2025 17:32:35 GMT
- Title: Optimistically Optimistic Exploration for Provably Efficient Infinite-Horizon Reinforcement and Imitation Learning
- Authors: Antoine Moulin, Gergely Neu, Luca Viano,
- Abstract summary: We propose the first computationally efficient algorithm achieving near-optimal regret guarantees in infinite-horizon discounted linear Markov decision processes.
We show that, combined with a regularized approximate dynamic-programming scheme, the resulting algorithm achieves a regret of order $tildemathcalO (sqrtd3 (1 - gamma)- 7 / 2 T)$, where $T$ is the total number of sample transitions, $gamma in (0,1)$ is the discount factor, and $d$ is the feature dimensionality.
- Score: 13.429541377715296
- License:
- Abstract: We study the problem of reinforcement learning in infinite-horizon discounted linear Markov decision processes (MDPs), and propose the first computationally efficient algorithm achieving near-optimal regret guarantees in this setting. Our main idea is to combine two classic techniques for optimistic exploration: additive exploration bonuses applied to the reward function, and artificial transitions made to an absorbing state with maximal return. We show that, combined with a regularized approximate dynamic-programming scheme, the resulting algorithm achieves a regret of order $\tilde{\mathcal{O}} (\sqrt{d^3 (1 - \gamma)^{- 7 / 2} T})$, where $T$ is the total number of sample transitions, $\gamma \in (0,1)$ is the discount factor, and $d$ is the feature dimensionality. The results continue to hold against adversarial reward sequences, enabling application of our method to the problem of imitation learning in linear MDPs, where we achieve state-of-the-art results.
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
We study the low-rank MDPs with adversarially changed losses in the full-information feedback setting.
We propose a policy optimization-based algorithm POLO, and we prove that it attains the $widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee.
arXiv Detail & Related papers (2023-11-14T03:12:43Z) - Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs [60.40452803295326]
We propose a new reward-free algorithm for learning linear Markov decision processes (MDPs)
At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward.
We show that our algorithm only needs to explore $tilde O( d2varepsilon-2)$ episodes to find an $varepsilon$-optimal policy.
arXiv Detail & Related papers (2023-03-17T17:53:28Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Learning Infinite-horizon Average-reward MDPs with Linear Function
Approximation [44.374427255708135]
We develop new algorithms for learning Markov Decision Processes in an infinite-horizon average-reward setting with linear function approximation.
Using the optimism principle and assuming that the MDP has a linear structure, we first propose a computationally inefficient algorithm with optimal $widetildeO(sqrtT)$ regret.
Next, taking inspiration from adversarial linear bandits, we develop yet another efficient algorithm with $widetildeO(sqrtT)$ regret.
arXiv Detail & Related papers (2020-07-23T08:23:44Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
arXiv Detail & Related papers (2020-06-23T17:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.