Response of strongly coupled fermions on classical and quantum computers
- URL: http://arxiv.org/abs/2405.02255v1
- Date: Fri, 3 May 2024 17:13:46 GMT
- Title: Response of strongly coupled fermions on classical and quantum computers
- Authors: John Novak, Manqoba Q. Hlatshwayo, Elena Litvinova,
- Abstract summary: We present an algorithm with a quantum benefit for treating complex configurations of the nuclear response.
The classical computational method of approaching spectroscopic accuracy is implemented for medium-heavy nuclei.
The quantum algorithm reaching the exact solution is realized for the Lipkin Hamiltonian to unravel the emergence of collectivity at strong coupling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studying the response of quantum systems is essential for gaining deeper insights into the fundamental nature of matter and its behavior in diverse physical contexts. Computation of nuclear response is critical for many applications, but its spectroscopically accurate description in medium-heavy nuclei in wide energy ranges remains particularly challenging because of the complex nature of nuclear quantum states in the high-level-density regime. Herein, we push the limits of configuration complexity in the classical computation of the nuclear response and present an algorithm with a quantum benefit for treating complex configurations. The classical computational method of approaching spectroscopic accuracy is implemented for medium-heavy nuclei and pioneered for the dipole response of 120Sn, while the quantum algorithm reaching the exact solution is realized for the Lipkin Hamiltonian to unravel the emergence of collectivity at strong coupling.
Related papers
- On the role of coherence for quantum computational advantage [0.5825410941577593]
We introduce path coherence as a measure of the coherent paths interferences arising in a quantum computation.
Our results have practical applications for simulating large classes of quantum computations with classical computers.
arXiv Detail & Related papers (2024-10-09T16:06:07Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A full circuit-based quantum algorithm for excited-states in quantum
chemistry [6.973166066636441]
We propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian.
Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process.
The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.
arXiv Detail & Related papers (2021-12-28T15:48:09Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - A general quantum algorithm for open quantum dynamics demonstrated with
the Fenna-Matthews-Olson complex [0.0]
We develop a quantum algorithm to simulate any dynamical process represented by either the operator sum representation or the Lindblad master equation.
We demonstrate the quantum algorithm by simulating the dynamics of the Fenna-Matthews-Olson complex on the IBM QASM quantum simulator.
arXiv Detail & Related papers (2021-01-13T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.