On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning?
- URL: http://arxiv.org/abs/2405.02266v1
- Date: Fri, 3 May 2024 17:34:02 GMT
- Title: On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning?
- Authors: Maxime Zanella, Ismail Ben Ayed,
- Abstract summary: We introduce a robust MeanShift for Test-time Augmentation (MTA)
MTA surpasses prompt-based methods without requiring this intensive training procedure.
We extensively benchmark our method on 15 datasets and demonstrate MTA's superiority and computational efficiency.
- Score: 13.803180972839213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of large vision-language models, notably CLIP, has catalyzed research into effective adaptation techniques, with a particular focus on soft prompt tuning. Conjointly, test-time augmentation, which utilizes multiple augmented views of a single image to enhance zero-shot generalization, is emerging as a significant area of interest. This has predominantly directed research efforts toward test-time prompt tuning. In contrast, we introduce a robust MeanShift for Test-time Augmentation (MTA), which surpasses prompt-based methods without requiring this intensive training procedure. This positions MTA as an ideal solution for both standalone and API-based applications. Additionally, our method does not rely on ad hoc rules (e.g., confidence threshold) used in some previous test-time augmentation techniques to filter the augmented views. Instead, MTA incorporates a quality assessment variable for each view directly into its optimization process, termed as the inlierness score. This score is jointly optimized with a density mode seeking process, leading to an efficient training- and hyperparameter-free approach. We extensively benchmark our method on 15 datasets and demonstrate MTA's superiority and computational efficiency. Deployed easily as plug-and-play module on top of zero-shot models and state-of-the-art few-shot methods, MTA shows systematic and consistent improvements.
Related papers
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - Parametric Augmentation for Time Series Contrastive Learning [33.47157775532995]
We create positive examples that assist the model in learning robust and discriminative representations.
Usually, preset human intuition directs the selection of relevant data augmentations.
We propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning.
arXiv Detail & Related papers (2024-02-16T03:51:14Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR)
Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data.
During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task.
arXiv Detail & Related papers (2023-08-31T06:32:11Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Gradient-Regulated Meta-Prompt Learning for Generalizable
Vision-Language Models [137.74524357614285]
We introduce a novel Gradient-RegulAted Meta-prompt learning framework.
It helps pre-training models adapt to downstream tasks in a parameter -- and data -- efficient way.
GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way.
arXiv Detail & Related papers (2023-03-12T05:03:37Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z) - Unified Vision and Language Prompt Learning [86.1530128487077]
We present a systematic study on two representative prompt tuning methods, namely text prompt tuning and visual prompt tuning.
A major finding is that text prompt tuning fails on data with high intra-class visual variances while visual prompt tuning cannot handle low inter-class variances.
To combine the best from both worlds, we propose a simple approach called Unified Prompt Tuning (UPT), which essentially learns a tiny neural network to jointly optimize prompts across different modalities.
arXiv Detail & Related papers (2022-10-13T17:50:24Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.