PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
- URL: http://arxiv.org/abs/2502.12119v1
- Date: Mon, 17 Feb 2025 18:43:41 GMT
- Title: PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
- Authors: Jinhe Bi, Yifan Wang, Danqi Yan, Xun Xiao, Artur Hecker, Volker Tresp, Yunpu Ma,
- Abstract summary: PRISM is a training-free approach for efficient multimodal data selection.
It uses Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs.
It reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods.
- Score: 28.442470930703337
- License:
- Abstract: Visual instruction tuning refines pre-trained Multimodal Large Language Models (MLLMs) to enhance their real-world task performance. However, the rapid expansion of visual instruction datasets introduces significant data redundancy, leading to excessive computational costs. Existing data selection methods predominantly rely on proxy models or loss-based metrics, both of which impose substantial computational overheads due to the necessity of model inference and backpropagation. To address this challenge, we propose PRISM, a novel training-free approach for efficient multimodal data selection. Unlike existing methods, PRISM eliminates the reliance on proxy models, warm-up pretraining, and gradient-based optimization. Instead, it leverages Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs, computing a task-specific correlation score to identify high-value instances. This not only enbles data-efficient selection,but maintains the original performance. Empirical evaluations across multiple MLLMs demonstrate that PRISM reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods, while surpassing fully fine-tuned models across eight multimodal and three language understanding benchmarks, achieving a 101.7% relative improvement in final performance.
Related papers
- Mastering Collaborative Multi-modal Data Selection: A Focus on Informativeness, Uniqueness, and Representativeness [65.01625761120924]
We argue that a valuable sample should be informative of the task, non-redundant, and represent the sample distribution (i.e., not an outlier)
We propose a collaborative framework, DataTailor, which leverages three key principles--informativeness, uniqueness, and representativeness--for effective data selection.
Experiments on various benchmarks demonstrate that DataTailor achieves 100.8% of the performance of full-data fine-tuning with only 15% of the data.
arXiv Detail & Related papers (2024-12-09T08:36:10Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
We show that jointly selecting batches of data is more effective for learning than selecting examples independently.
We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points.
arXiv Detail & Related papers (2024-06-25T16:52:37Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.