論文の概要: A SER-based Device Selection Mechanism in Multi-bits Quantization Federated Learning
- arxiv url: http://arxiv.org/abs/2405.02320v1
- Date: Sat, 20 Apr 2024 06:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 16:00:17.714086
- Title: A SER-based Device Selection Mechanism in Multi-bits Quantization Federated Learning
- Title(参考訳): マルチビット量子化フェデレーション学習におけるSERに基づくデバイス選択機構
- Authors: Pengcheng Sun, Erwu Liu, Rui Wang,
- Abstract要約: 本稿では,無線通信が記号誤り率(SER)による連合学習(FL)に与える影響を解析する。
FLシステムでは,非直交多重アクセス(NOMA)を基本的な通信フレームワークとして使用することで,複数のユーザによる通信混雑や干渉を低減することができる。
勾配パラメータを複数のビットに量子化し、より多くの勾配情報を最大範囲に保持し、伝送エラーの耐性を向上させる。
- 参考スコア(独自算出の注目度): 6.922030110539386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quality of wireless communication will directly affect the performance of federated learning (FL), so this paper analyze the influence of wireless communication on FL through symbol error rate (SER). In FL system, non-orthogonal multiple access (NOMA) can be used as the basic communication framework to reduce the communication congestion and interference caused by multiple users, which takes advantage of the superposition characteristics of wireless channels. The Minimum Mean Square Error (MMSE) based serial interference cancellation (SIC) technology is used to recover the gradient of each terminal node one by one at the receiving end. In this paper, the gradient parameters are quantized into multiple bits to retain more gradient information to the maximum extent and to improve the tolerance of transmission errors. On this basis, we designed the SER-based device selection mechanism (SER-DSM) to ensure that the learning performance is not affected by users with bad communication conditions, while accommodating as many users as possible to participate in the learning process, which is inclusive to a certain extent. The experiments show the influence of multi-bit quantization of gradient on FL and the necessity and superiority of the proposed SER-based device selection mechanism.
- Abstract(参考訳): 無線通信の質は、FL(Federated Learning)の性能に直接影響を及ぼすので、シンボル誤り率(SER)を用いて、FLにおける無線通信の影響を解析する。
FLシステムでは、非直交多重アクセス(NOMA)を、無線チャネルの重畳特性を利用する複数のユーザによる通信混雑と干渉を低減するための基本的な通信フレームワークとして用いることができる。
最小平均角誤差(MMSE)に基づくシリアル干渉キャンセル(SIC)技術を用いて、受信端で各端末ノードの勾配を1つずつ回復する。
本稿では、勾配パラメータを複数のビットに量子化して、より多くの勾配情報を最大範囲に保持し、伝送誤差の許容性を向上させる。
そこで我々は,SERベースのデバイス選択機構(SER-DSM)を設計し,学習性能が悪い通信条件のユーザの影響を受けないようにした。
実験は、勾配の多重ビット量子化がFLに与える影響と、提案したSERデバイス選択機構の必要性と優位性を示す。
関連論文リスト
- Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
一般マルチインプット・マルチアウトプット(MIMO)干渉チャネルに対するインターフェクト・ロバスト・セマンティック通信(IRSC)方式を提案する。
このスキームはニューラルネットワーク(NN)に基づくトランシーバの開発を伴い、チャネル状態情報(CSI)を受信機のみ、または送信機と受信機の両方の端で統合する。
実験結果から、IRSC方式は干渉を緩和し、ベースラインアプローチより優れることを示す。
論文 参考訳(メタデータ) (2024-04-10T11:40:22Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - CFLIT: Coexisting Federated Learning and Information Transfer [18.30671838758503]
本研究では,モバイルエッジネットワークにおける無線放送と従来型情報伝達(IT)の共存性について検討する。
FLとITデバイスがOFDMシステムで無線スペクトルを共有するCFLIT(Commanded Learning and Information Transfer)通信フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-26T13:17:28Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel。
そこで本研究では,各デバイスに局所勾配をアライメントするモデルアグリゲーション手法を提案する。
新たなモデルアグリゲーション手法を用いることで,デバイス選択はもはや我々の計画に必須ではないことを示す。
論文 参考訳(メタデータ) (2021-12-27T10:42:04Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Quantized Federated Learning under Transmission Delay and Outage
Constraints [30.892724364965005]
フェデレートラーニング(Federated Learning)は、無線エッジ内の巨大なモバイルデバイスと協調して機械学習モデルをトレーニングする、実行可能な分散学習パラダイムである。
無線リソースが限られている実用的なシステムでは、多数のモデルパラメータの送信は量子化エラー(QE)と送信停止(TO)に必然的に悩まされる。
我々は,無線リソースと量子化ビットをクライアント間で共同で割り当て,QEを最小化するとともに,クライアントがTO確率を持つようにする,堅牢なFLスキームFedTOEを提案する。
論文 参考訳(メタデータ) (2021-06-17T11:29:12Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
我々は,デバイス選択,無線トランシーバ設計,RIS構成を協調的に最適化する統一的なコミュニケーション学習最適化問題を開発した。
数値実験により,提案手法は最先端の手法と比較して,学習精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-11-20T08:54:13Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
フェデレートラーニング(FL)では、パラメータサーバとモバイルデバイスが無線リンク上でトレーニングパラメータを共有する。
我々は、勾配の符号のみを交換するSignSGDという考え方を採用する。
2つの最適化問題を定式化し、学習性能を最適化する。
FLでは非常に不均一な方法でモバイルデバイスに分散される可能性があることを考慮し,手話に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-15T21:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。