論文の概要: Enhancing Social Media Post Popularity Prediction with Visual Content
- arxiv url: http://arxiv.org/abs/2405.02367v2
- Date: Wed, 8 May 2024 10:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 13:25:23.619151
- Title: Enhancing Social Media Post Popularity Prediction with Visual Content
- Title(参考訳): ビジュアルコンテンツによるソーシャルメディアポスト人気予測の強化
- Authors: Dahyun Jeong, Hyelim Son, Yunjin Choi, Keunwoo Kim,
- Abstract要約: Google Cloud Vision APIを使用して、ユーザの投稿からキーイメージとカラー情報を抽出します。
予測には線形混合モデル,サポートベクトル回帰,多層パーセプトロン,ランダムフォレスト,XGBoostなど,幅広い予測モデルを検討する。
- 参考スコア(独自算出の注目度): 0.2999888908665658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Our study presents a framework for predicting image-based social media content popularity that focuses on addressing complex image information and a hierarchical data structure. We utilize the Google Cloud Vision API to effectively extract key image and color information from users' postings, achieving 6.8% higher accuracy compared to using non-image covariates alone. For prediction, we explore a wide range of prediction models, including Linear Mixed Model, Support Vector Regression, Multi-layer Perceptron, Random Forest, and XGBoost, with linear regression as the benchmark. Our comparative study demonstrates that models that are capable of capturing the underlying nonlinear interactions between covariates outperform other methods.
- Abstract(参考訳): 本研究では,複雑な画像情報と階層的データ構造に対処することに焦点を当てた,画像ベースのソーシャルメディアコンテンツ人気予測フレームワークを提案する。
Google Cloud Vision APIを使用して、ユーザの投稿からキーイメージとカラー情報を効果的に抽出し、非画像共変量のみを使用する場合と比較して6.8%高い精度を達成する。
予測には線形混合モデル,サポートベクトル回帰,多層パーセプトロン,ランダムフォレスト,XGBoostなど,幅広い予測モデルをベンチマークとして検討する。
比較研究では,共変量間の非線型相互作用を捉えることができるモデルが,他の手法より優れていることを示す。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Using Images as Covariates: Measuring Curb Appeal with Deep Learning [0.0]
本稿では、画像データを従来の計量モデルに統合する革新的な手法を詳述する。
住宅不動産の販売価格予測に動機づけられた深層学習の力を活用して「情報」を付加する
各画像内で提示される特異な特徴は、さらに汎視的セグメンテーションによって符号化された。
符号化されたデータに基づいてトレーニングされたニューラルネットワークからの予測は、サンプル外予測能力を改善する。
論文 参考訳(メタデータ) (2024-03-29T02:03:00Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Transformer-based Image Generation from Scene Graphs [11.443097632746763]
グラフ構造化シーン記述は、生成した画像の合成を制御するために、生成モデルで効率的に使用することができる。
従来のアプローチは、グラフ畳み込みネットワークと、レイアウト予測と画像生成のための逆法の組み合わせに基づいている。
グラフ情報の符号化にマルチヘッドアテンションを用いることにより,サンプルデータの品質が向上することを示す。
論文 参考訳(メタデータ) (2023-03-08T14:54:51Z) - Robustifying Deep Vision Models Through Shape Sensitization [19.118696557797957]
そこで本研究では,ネットワークの全体像を学習するためのインセンティブを明示的に付与する,シンプルで軽量な対向拡張手法を提案する。
我々の拡張は、ランダムに決定された混合比を用いて、シャッフルパッチで、ある画像から別の画像へのエッジマップを重畳する。
この拡張により,データセットやニューラルアーキテクチャの分類精度とロバストネスが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-14T11:17:46Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
視覚言語による事前学習が近年注目を集めている。
大量のデータは、通常ストリーミング形式で収集される。
本稿では,画像とテキスト間のマルチモーダルな知識蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-10-31T13:42:21Z) - Through a fair looking-glass: mitigating bias in image datasets [1.0323063834827415]
目的変数間の統計的依存を最小化し,画像データセットを非バイアス化するための高速かつ効果的なモデルを提案する。
提案手法をCelebAデータセット上で評価し、その結果を最先端のデバイアス法と比較し、そのモデルが有望なフェアネスと精度の組み合わせを達成することを示す。
論文 参考訳(メタデータ) (2022-09-18T20:28:36Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
我々は、異なるデータセットの断片化アノテーションを最大限に活用するために、マルチデータセット事前訓練と呼ばれる統合フレームワークを提案する。
これは、複数のデータセットに対して提案されたピクセルからプロトタイプへのコントラスト損失を通じてネットワークを事前トレーニングすることで実現される。
異なるデータセットからの画像とクラス間の関係をより良くモデル化するために、クロスデータセットの混合によりピクセルレベルの埋め込みを拡張する。
論文 参考訳(メタデータ) (2021-06-08T06:13:11Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。