Enhancing Social Media Post Popularity Prediction with Visual Content
- URL: http://arxiv.org/abs/2405.02367v2
- Date: Wed, 8 May 2024 10:47:28 GMT
- Title: Enhancing Social Media Post Popularity Prediction with Visual Content
- Authors: Dahyun Jeong, Hyelim Son, Yunjin Choi, Keunwoo Kim,
- Abstract summary: We use the Google Cloud Vision API to extract key image and color information from users' postings.
For prediction, we explore a wide range of prediction models, including Linear Mixed Model, Support Vector Regression, Multi-layer Perceptron, Random Forest, and XGBoost.
- Score: 0.2999888908665658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Our study presents a framework for predicting image-based social media content popularity that focuses on addressing complex image information and a hierarchical data structure. We utilize the Google Cloud Vision API to effectively extract key image and color information from users' postings, achieving 6.8% higher accuracy compared to using non-image covariates alone. For prediction, we explore a wide range of prediction models, including Linear Mixed Model, Support Vector Regression, Multi-layer Perceptron, Random Forest, and XGBoost, with linear regression as the benchmark. Our comparative study demonstrates that models that are capable of capturing the underlying nonlinear interactions between covariates outperform other methods.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Using Images as Covariates: Measuring Curb Appeal with Deep Learning [0.0]
This paper details an innovative methodology to integrate image data into traditional econometric models.
Motivated by forecasting sales prices for residential real estate, we harness the power of deep learning to add "information"
Unique features presented within each image were further encoded through panoptic segmentation.
Forecasts from a neural network trained on the encoded data results in improved out-of-sample predictive power.
arXiv Detail & Related papers (2024-03-29T02:03:00Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Transformer-based Image Generation from Scene Graphs [11.443097632746763]
Graph-structured scene descriptions can be efficiently used in generative models to control the composition of the generated image.
Previous approaches are based on the combination of graph convolutional networks and adversarial methods for layout prediction and image generation.
We show how employing multi-head attention to encode the graph information can improve the quality of the sampled data.
arXiv Detail & Related papers (2023-03-08T14:54:51Z) - Robustifying Deep Vision Models Through Shape Sensitization [19.118696557797957]
We propose a simple, lightweight adversarial augmentation technique that explicitly incentivizes the network to learn holistic shapes.
Our augmentations superpose edgemaps from one image onto another image with shuffled patches, using a randomly determined mixing proportion.
We show that our augmentations significantly improve classification accuracy and robustness measures on a range of datasets and neural architectures.
arXiv Detail & Related papers (2022-11-14T11:17:46Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
Vision-language pre-training has attracted increasing attention recently.
Massive data are usually collected in a streaming fashion.
We propose a multi-modal knowledge distillation between images and texts to align the instance-wise prediction between old and new models.
arXiv Detail & Related papers (2022-10-31T13:42:21Z) - Through a fair looking-glass: mitigating bias in image datasets [1.0323063834827415]
We present a fast and effective model to de-bias an image dataset through reconstruction and minimizing the statistical dependence between intended variables.
We evaluate our proposed model on CelebA dataset, compare the results with a state-of-the-art de-biasing method, and show that the model achieves a promising fairness-accuracy combination.
arXiv Detail & Related papers (2022-09-18T20:28:36Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
We propose a unified framework, termed as Multi-Dataset Pretraining, to take full advantage of the fragmented annotations of different datasets.
This is achieved by first pretraining the network via the proposed pixel-to-prototype contrastive loss over multiple datasets.
In order to better model the relationship among images and classes from different datasets, we extend the pixel level embeddings via cross dataset mixing.
arXiv Detail & Related papers (2021-06-08T06:13:11Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.