論文の概要: CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2405.02429v2
- Date: Fri, 23 Aug 2024 20:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:36:49.131582
- Title: CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation
- Title(参考訳): CALRec:シークエンシャルレコメンデーションのためのジェネレーティブLLMのコントラストアライメント
- Authors: Yaoyiran Li, Xiang Zhai, Moustafa Alzantot, Keyi Yu, Ivan Vulić, Anna Korhonen, Mohamed Hammad,
- Abstract要約: 大規模言語モデル(LLM)は、シーケンシャルなレコメンデーションのために大量のテキストコーパスで事前訓練される。
本稿では,2つの対照的な損失と言語モデリング損失を混合して,事前学習したLLMを2tower方式で微調整する2段階のLLMファインタニングフレームワークを提案する。
我々のモデルは、多くの最先端のベースラインを著しく上回ります。
- 参考スコア(独自算出の注目度): 18.986613405565514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional recommender systems such as matrix factorization methods have primarily focused on learning a shared dense embedding space to represent both items and user preferences. Subsequently, sequence models such as RNN, GRUs, and, recently, Transformers have emerged and excelled in the task of sequential recommendation. This task requires understanding the sequential structure present in users' historical interactions to predict the next item they may like. Building upon the success of Large Language Models (LLMs) in a variety of tasks, researchers have recently explored using LLMs that are pretrained on vast corpora of text for sequential recommendation. To use LLMs for sequential recommendation, both the history of user interactions and the model's prediction of the next item are expressed in text form. We propose CALRec, a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss: the LLM is first finetuned on a data mixture from multiple domains followed by another round of target domain finetuning. Our model significantly outperforms many state-of-the-art baselines (+37% in Recall@1 and +24% in NDCG@10) and our systematic ablation studies reveal that (i) both stages of finetuning are crucial, and, when combined, we achieve improved performance, and (ii) contrastive alignment is effective among the target domains explored in our experiments.
- Abstract(参考訳): 行列因数分解法のような従来の推薦システムは、アイテムとユーザの好みの両方を表現するために、共有の密接な埋め込み空間を学習することに集中してきた。
その後、RNN、GRU、最近ではトランスフォーマーといったシーケンスモデルが登場し、シーケンシャルレコメンデーションのタスクに優れています。
このタスクは、ユーザが望むであろう次の項目を予測するために、ユーザの過去のインタラクションに存在するシーケンシャルな構造を理解する必要がある。
様々なタスクにおける大規模言語モデル(LLM)の成功に基づいて、研究者は近年、大量のテキストコーパスで事前訓練されたLLMを用いて、シーケンシャルなレコメンデーションを行っている。
逐次レコメンデーションにLLMを使用するには、ユーザインタラクションの歴史と次の項目のモデルの予測の両方をテキスト形式で表現する。
2つの対照的な損失と言語モデリング損失を混合した2段階のLCMファインタニングフレームワークであるCALRecを提案する。
我々のモデルは、多くの最先端ベースライン(Recall@1では+37%、NDCG@10では+24%)を著しく上回り、系統的アブレーション研究により明らかとなった。
(i)微調整の両段階が重要であり、組み合わせると性能が向上し、
2) 実験対象領域では, コントラストアライメントが有効である。
関連論文リスト
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
大規模言語モデル(LLM)は様々な分野で顕著な成功を収めており、いくつかの研究がレコメンデーションシステムにおいてその可能性を探求している。
逐次レコメンデーションシステムを強化するために,新しい階層型大規模言語モデル (HLLM) アーキテクチャを提案する。
HLLMは,項目特徴抽出とユーザ関心モデリングの両方に 7B パラメータを利用する構成で,優れたスケーラビリティを実現している。
論文 参考訳(メタデータ) (2024-09-19T13:03:07Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
動的セマンティック・インデックス・パラダイムを採用した最初の生成型RSであるTTDS(Twin-Tower Dynamic Semantic Recommender)を提案する。
より具体的には、ツイン・トワー・セマンティック・トークン・ジェネレータをLLMベースのレコメンデータに統合する動的知識融合フレームワークを初めて提案する。
提案したTTDSレコメンデータは,平均19.41%のヒットレート,20.84%のNDCG測定値を実現している。
論文 参考訳(メタデータ) (2024-09-14T01:45:04Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
本稿では、シーケンシャルレコメンデータシステム(SRS)のための優先構文解析(P2Rec)を用いた実践的LLM拡張パラダイムを提案する。
具体的には、情報再構成段階において、事前学習したSRSモデルの助けを借りて、協調的な情報注入のための新しいユーザレベルSFTタスクを設計する。
我々のゴールは、LLMが各ユーザのインタラクションシーケンスから対応する優先度分布を再構築することを学ばせることである。
論文 参考訳(メタデータ) (2024-06-01T07:18:56Z) - A Framework to Implement 1+N Multi-task Fine-tuning Pattern in LLMs
Using the CGC-LORA Algorithm [7.521690071464451]
大規模言語モデル (LLM) において, 1 + N mutli-task の微調整パターンを実装する統一フレームワークを提案する。
我々の研究は、MPL(CGC)とPEFT(LoRA)の両方の利点を享受することを目的としている。
論文 参考訳(メタデータ) (2024-01-22T07:58:31Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
ゼロショットと少数ショットのレコメンデーションタスクのために、純粋に大きな言語モデルを適応し、強化することに重点を置いています。
ゼロショット設定と少数ショット設定の両方でレコメンデーションタスクを行うRetrieval-enhanced Large Language Model (ReLLa)を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:25:04Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。