Modelling Sampling Distributions of Test Statistics with Autograd
- URL: http://arxiv.org/abs/2405.02488v2
- Date: Tue, 29 Oct 2024 01:02:17 GMT
- Title: Modelling Sampling Distributions of Test Statistics with Autograd
- Authors: Ali Al Kadhim, Harrison B. Prosper,
- Abstract summary: We explore whether this approach to modeling conditional 1-dimensional sampling distributions is a viable alternative to the probability density-ratio method.
Relatively simple, yet effective, neural network models are used whose predictive uncertainty is quantified through a variety of methods.
- Score: 0.0
- License:
- Abstract: Simulation-based inference methods that feature correct conditional coverage of confidence sets based on observations that have been compressed to a scalar test statistic require accurate modeling of either the p-value function or the cumulative distribution function (cdf) of the test statistic. If the model of the cdf, which is typically a deep neural network, is a function of the test statistic then the derivative of the neural network with respect to the test statistic furnishes an approximation of the sampling distribution of the test statistic. We explore whether this approach to modeling conditional 1-dimensional sampling distributions is a viable alternative to the probability density-ratio method, also known as the likelihood-ratio trick. Relatively simple, yet effective, neural network models are used whose predictive uncertainty is quantified through a variety of methods.
Related papers
- Robust Estimation for Kernel Exponential Families with Smoothed Total Variation Distances [2.317910166616341]
In statistical inference, we commonly assume that samples are independent and identically distributed from a probability distribution.
In this paper, we explore the application of GAN-like estimators to a general class of statistical models.
arXiv Detail & Related papers (2024-10-28T05:50:47Z) - Accuracy-Preserving Calibration via Statistical Modeling on Probability
Simplex [5.64979077798699]
We propose an accuracy-preserving calibration method using the Concrete distribution as the probabilistic model on the probability simplex.
We demonstrate that the proposed method can outperform previous methods in accuracy-preserving calibration tasks using benchmarks.
arXiv Detail & Related papers (2024-02-21T12:39:20Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Model-agnostic out-of-distribution detection using combined statistical
tests [15.27980070479021]
We present simple methods for out-of-distribution detection using a trained generative model.
We combine a classical parametric test (Rao's score test) with the recently introduced typicality test.
Despite their simplicity and generality, these methods can be competitive with model-specific out-of-distribution detection algorithms.
arXiv Detail & Related papers (2022-03-02T13:32:09Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSE is the density of states estimator.
We demonstrate DoSE's state-of-the-art performance against other unsupervised OOD detectors.
arXiv Detail & Related papers (2020-06-16T16:06:25Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.