Testing Conditional Mean Independence Using Generative Neural Networks
- URL: http://arxiv.org/abs/2501.17345v1
- Date: Tue, 28 Jan 2025 23:35:24 GMT
- Title: Testing Conditional Mean Independence Using Generative Neural Networks
- Authors: Yi Zhang, Linjun Huang, Yun Yang, Xiaofeng Shao,
- Abstract summary: We introduce a novel population CMI measure and a bootstrap model-based testing procedure.
Deep generative neural networks are used to estimate the conditional mean functions involved in the population measure.
- Score: 8.323172773256449
- License:
- Abstract: Conditional mean independence (CMI) testing is crucial for statistical tasks including model determination and variable importance evaluation. In this work, we introduce a novel population CMI measure and a bootstrap-based testing procedure that utilizes deep generative neural networks to estimate the conditional mean functions involved in the population measure. The test statistic is thoughtfully constructed to ensure that even slowly decaying nonparametric estimation errors do not affect the asymptotic accuracy of the test. Our approach demonstrates strong empirical performance in scenarios with high-dimensional covariates and response variable, can handle multivariate responses, and maintains nontrivial power against local alternatives outside an $n^{-1/2}$ neighborhood of the null hypothesis. We also use numerical simulations and real-world imaging data applications to highlight the efficacy and versatility of our testing procedure.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models [0.5223954072121659]
Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models.
In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference.
The proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
arXiv Detail & Related papers (2024-12-29T21:22:24Z) - Doubly Robust Conditional Independence Testing with Generative Neural Networks [8.323172773256449]
This article addresses the problem of testing the conditional independence of two generic random vectors $X$ and $Y$ given a third random vector $Z$.
We propose a new non-parametric testing procedure that avoids explicitly estimating any conditional distributions.
arXiv Detail & Related papers (2024-07-25T01:28:59Z) - Modelling Sampling Distributions of Test Statistics with Autograd [0.0]
We explore whether this approach to modeling conditional 1-dimensional sampling distributions is a viable alternative to the probability density-ratio method.
Relatively simple, yet effective, neural network models are used whose predictive uncertainty is quantified through a variety of methods.
arXiv Detail & Related papers (2024-05-03T21:34:12Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Learning to Increase the Power of Conditional Randomization Tests [8.883733362171032]
The model-X conditional randomization test is a generic framework for conditional independence testing.
We introduce novel model-fitting schemes that are designed to explicitly improve the power of model-X tests.
arXiv Detail & Related papers (2022-07-03T12:29:25Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z) - Nonparametric Inference under B-bits Quantization [5.958064620718292]
We propose a nonparametric testing procedure based on samples quantized to $B$ bits.
In particular, we show that if $B$ exceeds a certain threshold, the proposed nonparametric testing procedure achieves the classical minimax rate of testing.
arXiv Detail & Related papers (2019-01-24T18:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.