DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands
- URL: http://arxiv.org/abs/2405.02499v1
- Date: Fri, 3 May 2024 22:10:21 GMT
- Title: DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands
- Authors: Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin Kim, Jaehyun Park, Chihun Song, Nam Sung Kim, Jung Ho Ahn,
- Abstract summary: This paper presents findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs)
For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated.
We identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.
- Score: 6.863346979406863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.
Related papers
- Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights into Modern DRAM Chips [0.0]
Storage density exacerbates DRAM read disturbance, a circuit-level vulnerability exploited by system-level attacks.
Existing defenses are either ineffective or prohibitively expensive.
This dissertation tackles two problems: 1) protecting DRAM-based systems becomes more expensive as technology scaling increases read disturbance vulnerability, and 2) many existing solutions depend on proprietary knowledge of DRAM internals.
arXiv Detail & Related papers (2024-08-27T13:12:03Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions [6.731882555515892]
We present the first rigorous real DRAM chip characterization study of spatial variation of read disturbance.
We propose Sv"ard, a new mechanism that dynamically adapts the aggressiveness of existing solutions based on the row-level read disturbance profile.
arXiv Detail & Related papers (2024-02-28T19:00:55Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
We present a framework to tackle the memory explosion problem using memory replay techniques.
PDGNNs with Topology-aware Embedding Memory (TEM) significantly outperform state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-24T03:03:17Z) - Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips [6.501197729222095]
We experimentally demonstrate the effects of read disturbance (RowHammer and RowPress) and uncover the inner workings of undocumented read disturbance defense mechanisms in High Bandwidth Memory (HBM)
Detailed characterization of six real2 DRAM chips in two different FPGA boards shows that the read disturbance vulnerability significantly varies between different2 chips.
We describe how our findings could be leveraged to develop more powerful read disturbance attacks and more efficient defense mechanisms.
arXiv Detail & Related papers (2023-10-23T08:01:48Z) - Analysis of the Memorization and Generalization Capabilities of AI
Agents: Are Continual Learners Robust? [91.682459306359]
In continual learning (CL), an AI agent learns from non-stationary data streams under dynamic environments.
In this paper, a novel CL framework is proposed to achieve robust generalization to dynamic environments while retaining past knowledge.
The generalization and memorization performance of the proposed framework are theoretically analyzed.
arXiv Detail & Related papers (2023-09-18T21:00:01Z) - ALARM: Active LeArning of Rowhammer Mitigations [0.0]
Rowhammer is a serious security problem of contemporary dynamic random-access memory (DRAM)
We present a tool, based on active learning, that automatically infers parameter of Rowhammer mitigations against synthetic models of modern DRAM.
arXiv Detail & Related papers (2022-11-30T12:24:35Z) - Self-Managing DRAM: A Low-Cost Framework for Enabling Autonomous and Efficient in-DRAM Operations [7.663876942368506]
We propose a new low-cost DRAM architecture, Self-Managing DRAM (SMD), that enables autonomous in-DRAM maintenance operations.
SMD transfers responsibility for controlling maintenance operations from the memory controller to the chip.
We show that it can be implemented without adding new pins to the DDRx interface with low latency and area overhead.
arXiv Detail & Related papers (2022-07-27T08:27:10Z) - Working Memory Connections for LSTM [51.742526187978726]
We show that Working Memory Connections constantly improve the performance of LSTMs on a variety of tasks.
Numerical results suggest that the cell state contains useful information that is worth including in the gate structure.
arXiv Detail & Related papers (2021-08-31T18:01:30Z) - ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and
Gradient Accumulation [106.04777600352743]
Differentiable architecture search (DARTS) is largely hindered by its substantial memory cost since the entire supernet resides in the memory.
The single-path DARTS comes in, which only chooses a single-path submodel at each step.
While being memory-friendly, it also comes with low computational costs.
We propose a new algorithm called RObustifying Memory-Efficient NAS (ROME) to give a cure.
arXiv Detail & Related papers (2020-11-23T06:34:07Z) - Towards Automated Neural Interaction Discovery for Click-Through Rate
Prediction [64.03526633651218]
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems.
We propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR.
arXiv Detail & Related papers (2020-06-29T04:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.