Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
- URL: http://arxiv.org/abs/2505.00675v1
- Date: Thu, 01 May 2025 17:31:33 GMT
- Title: Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
- Authors: Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata, Kam-Fai Wong, Jeff Z. Pan,
- Abstract summary: Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents.<n>We introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression.<n>This survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI.
- Score: 55.19217798774033
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents. While prior surveys have focused on memory applications with LLMs, they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric, contextual structured, and contextual unstructured and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We systematically map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
Related papers
- Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
We develop a measure of textitmemory utilization'
This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
arXiv Detail & Related papers (2025-04-28T08:12:30Z) - Cognitive Memory in Large Language Models [8.059261857307881]
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency.<n>It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures.
arXiv Detail & Related papers (2025-04-03T09:58:19Z) - A-MEM: Agentic Memory for LLM Agents [42.50876509391843]
Large language model (LLM) agents require memory systems to leverage historical experiences.<n>Current memory systems enable basic storage and retrieval but lack sophisticated memory organization.<n>This paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way.
arXiv Detail & Related papers (2025-02-17T18:36:14Z) - On the Structural Memory of LLM Agents [20.529239764968654]
Memory plays a pivotal role in enabling large language model(LLM)-based agents to engage in complex and long-term interactions.
This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents.
arXiv Detail & Related papers (2024-12-17T04:30:00Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification,
Retrieval, and Synthesis in Question Answering [27.815507347725344]
This research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories.
PerLTQA features two types of memory and a benchmark of 8,593 questions for 30 characters.
We propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis.
arXiv Detail & Related papers (2024-02-26T04:09:53Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - MeMOT: Multi-Object Tracking with Memory [97.48960039220823]
Our model, called MeMOT, consists of three main modules that are all Transformer-based.
MeMOT observes very competitive performance on widely adopted MOT datasets.
arXiv Detail & Related papers (2022-03-31T02:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.