Synthesizing beta-amyloid PET images from T1-weighted Structural MRI: A Preliminary Study
- URL: http://arxiv.org/abs/2409.18282v2
- Date: Tue, 1 Oct 2024 13:12:03 GMT
- Title: Synthesizing beta-amyloid PET images from T1-weighted Structural MRI: A Preliminary Study
- Authors: Qing Lyu, Jin Young Kim, Jeongchul Kim, Christopher T Whitlow,
- Abstract summary: We propose an approach to utilize 3D diffusion models to synthesize A$beta$-PET images from T1-weighted MRI scans.
Our method generates high-quality A$beta$-PET images for cognitive normal cases, although it is less effective for mild cognitive impairment (MCI) patients.
- Score: 6.4038303148510005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Beta-amyloid positron emission tomography (A$\beta$-PET) imaging has become a critical tool in Alzheimer's disease (AD) research and diagnosis, providing insights into the pathological accumulation of amyloid plaques, one of the hallmarks of AD. However, the high cost, limited availability, and exposure to radioactivity restrict the widespread use of A$\beta$-PET imaging, leading to a scarcity of comprehensive datasets. Previous studies have suggested that structural magnetic resonance imaging (MRI), which is more readily available, may serve as a viable alternative for synthesizing A$\beta$-PET images. In this study, we propose an approach to utilize 3D diffusion models to synthesize A$\beta$-PET images from T1-weighted MRI scans, aiming to overcome the limitations associated with direct PET imaging. Our method generates high-quality A$\beta$-PET images for cognitive normal cases, although it is less effective for mild cognitive impairment (MCI) patients due to the variability in A$\beta$ deposition patterns among subjects. Our preliminary results suggest that incorporating additional data, such as a larger sample of MCI cases and multi-modality information including clinical and demographic details, cognitive and functional assessments, and longitudinal data, may be necessary to improve A$\beta$-PET image synthesis for MCI patients.
Related papers
- PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models [7.6672160690646445]
We introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models.
A cycle exchange consistency and volumetric generation strategy elevate PASTA's capability to produce high-quality 3D PET scans.
For Alzheimer's classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET.
arXiv Detail & Related papers (2024-05-27T08:33:24Z) - Functional Imaging Constrained Diffusion for Brain PET Synthesis from Structural MRI [5.190302448685122]
We propose a framework for 3D brain PET image synthesis with paired structural MRI as input condition, through a new constrained diffusion model (CDM)
The FICD introduces noise to PET and then progressively removes it with CDM, ensuring high output fidelity throughout a stable training phase.
The CDM learns to predict denoised PET with a functional imaging constraint introduced to ensure voxel-wise alignment between each denoised PET and its ground truth.
arXiv Detail & Related papers (2024-05-03T22:33:46Z) - Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
Alzheimer's Disease hallmarks include amyloid-beta deposits and brain atrophy.
PET is expensive, invasive and exposes patients to ionizing radiation.
MRI is cheaper, non-invasive, and free from ionizing radiation but limited to measuring brain atrophy.
arXiv Detail & Related papers (2024-05-03T14:10:29Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Amyloid-Beta Axial Plane PET Synthesis from Structural MRI: An Image
Translation Approach for Screening Alzheimer's Disease [49.62561299282114]
An image translation model is implemented to produce synthetic amyloid-beta PET images from structural MRI that are quantitatively accurate.
We found that the synthetic PET images could be produced with a high degree of similarity to truth in terms of shape, contrast and overall high SSIM and PSNR.
arXiv Detail & Related papers (2023-09-01T16:26:42Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Faithful Synthesis of Low-dose Contrast-enhanced Brain MRI Scans using
Noise-preserving Conditional GANs [102.47542231659521]
Gadolinium-based contrast agents (GBCA) are indispensable in Magnetic Resonance Imaging (MRI) for diagnosing various diseases.
GBCAs are expensive and may accumulate in patients with potential side effects.
It is unclear to which extent the GBCA dose can be reduced while preserving the diagnostic value.
arXiv Detail & Related papers (2023-06-26T13:19:37Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
Deep image prior (DIP) has been successfully applied to positron emission tomography (PET) image restoration.
We propose a self-supervised pre-training model to improve the DIP-based PET image denoising performance.
arXiv Detail & Related papers (2023-02-27T06:55:00Z) - Synthesizing Multi-Tracer PET Images for Alzheimer's Disease Patients
using a 3D Unified Anatomy-aware Cyclic Adversarial Network [9.406405460188818]
Positron Emission Tomography (PET) is an important tool for studying Alzheimer's disease (AD)
Previous works on medical image synthesis focus on one-to-one fixed domain translations, and cannot simultaneously learn the feature from multi-tracer domains.
We propose a 3D unified anatomy-aware cyclic adversarial network (UCAN) for translating multi-tracer PET volumes with one unified generative model.
arXiv Detail & Related papers (2021-07-12T15:10:29Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.