論文の概要: Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments
- arxiv url: http://arxiv.org/abs/2405.02579v1
- Date: Sat, 4 May 2024 06:25:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:20:44.602245
- Title: Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments
- Title(参考訳): サプライズ最小化によるロボットスワムの自然運動:簡単なシミュレーションから実世界実験へ
- Authors: Tanja Katharina Kaiser, Heiko Hamann,
- Abstract要約: 大規模モバイルマルチロボットシステムは、堅牢性とスケーラビリティの可能性が高いため、モノリシックロボットよりも有益である。
マルチロボットシステムのためのコントローラの開発は、対話の多さが予測し難く、モデル化が難しいため、難しい。
本質的にモチベーションは報酬の特定の定式化を避け、好奇心などの異なるドライバで作業しようとする。
Swarmのロボットケースのユニークな利点は、Swarmのメンバーがロボットの環境に飛び込み、自己参照ループでより活発な行動を引き起こすことができることである。
- 参考スコア(独自算出の注目度): 6.21540494241516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications of large-scale mobile multi-robot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability. Developing controllers for multi-robot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model. Automatic design using machine learning or evolutionary robotics seem to be options to avoid that challenge, but bring the challenge of designing reward or fitness functions. Generic reward and fitness functions seem unlikely to exist and task-specific rewards often have undesired side effects. Approaches of so-called innate motivation try to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity. Our approach to innate motivation is to minimize surprise, which we implement by maximizing the accuracy of the swarm robot's sensor predictions using neuroevolution. A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop. We summarize our previous simulation-based results concerning behavioral diversity, robustness, scalability, and engineered self-organization, and put them into context. In several new studies, we analyze the influence of the optimizer's hyperparameters, the scalability of evolved behaviors, and the impact of realistic robot simulations. Finally, we present results using real robots that show how the reality gap can be bridged.
- Abstract(参考訳): 大規模モバイルマルチロボットシステムの応用は、堅牢性とスケーラビリティの可能性が高いため、モノリシックロボットよりも有益である。
マルチロボットシステムのためのコントローラの開発は、対話の多さが予測し難く、モデル化が難しいため、難しい。
機械学習や進化型ロボットを使った自動設計は、その課題を避けるための選択肢のようだが、報酬やフィットネス機能の設計という課題をもたらす。
一般的な報酬やフィットネス機能は存在しないようで、タスク固有の報酬は望ましくない副作用を持つことが多い。
いわゆる本質的なモチベーションのアプローチは、報酬の特定の定式化を避け、好奇心のような異なるドライバーと仕事をする。
我々は,神経進化を用いて,スワムロボットのセンサ予測の精度を最大化することで,サプライズを最小化することを目的としている。
Swarmのロボットケースのユニークな利点は、Swarmのメンバーがロボットの環境に飛び込み、自己参照ループでより活発な行動を引き起こすことができることである。
振る舞いの多様性、堅牢性、スケーラビリティ、エンジニアリングされた自己組織化に関するこれまでのシミュレーションベースの結果を要約し、それらをコンテキストに配置する。
いくつかの新しい研究で、オプティマイザのハイパーパラメータの影響、進化した動作のスケーラビリティ、および現実的なロボットシミュレーションの影響を分析した。
最後に,実際のロボットを用いて,現実のギャップを埋める方法を示す。
関連論文リスト
- Multi-Task Interactive Robot Fleet Learning with Visual World Models [25.001148860168477]
Sirius-Fleetはマルチタスク対話型ロボットフリートラーニングフレームワークである。
デプロイ中のロボットのパフォーマンスを監視し、必要な時にロボットの動作を修正するよう人間に要求する。
ロボットの自律性が向上するにつれて、異常予測器は予測基準に自動的に適応する。
論文 参考訳(メタデータ) (2024-10-30T04:49:39Z) - Evolution and learning in differentiable robots [0.0]
我々は、異なるシミュレーションを用いて、多数の候補体計画において、行動の個々の神経制御を迅速かつ同時に最適化する。
個体群における各ロボットの機械的構造の変化は,探索の外ループに遺伝的アルゴリズムを適用した。
シミュレーションで発見された非常に微分可能な形態の1つは、物理ロボットとして実現され、その最適化された振る舞いを維持できた。
論文 参考訳(メタデータ) (2024-05-23T15:45:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Evolving Multi-Objective Neural Network Controllers for Robot Swarms [0.0]
本研究では,ロボット群に対する制御器開発のための多目的進化型ニューラルネットワーク手法を提案する。
Swarmロボットコントローラは、低忠実度Pythonシミュレータでトレーニングされ、Webotsを使用して高忠実度シミュレーション環境でテストされる。
論文 参考訳(メタデータ) (2023-07-26T15:05:17Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - URoboSim -- An Episodic Simulation Framework for Prospective Reasoning
in Robotic Agents [18.869243389210492]
URoboSimは、実際にこのタスクを実行する前に、ロボットが精神シミュレーションとしてタスクを実行できるロボットシミュレータです。
URoboSimの精神シミュレーションによる能力を示し、機械学習のためのデータを生成し、実際のロボットの信念状態として利用します。
論文 参考訳(メタデータ) (2020-12-08T14:23:24Z) - Behavioral Repertoires for Soft Tensegrity Robots [0.0]
モバイルソフトロボットは、都市探索や救助から惑星探査まで幅広い分野に魅力的な応用を提供している。
ソフト・ロボット・コントロールの重要な課題は、ソフト・マテリアルが課す非線形力学が、しばしば非直感的でモデル化や予測が難しい複雑な振る舞いをもたらすことである。
本研究では,ロボット力学の事前知識がなく,人間の介入が最小限である行動レパートリーを自律的に生成する物理ソフトな緊張ロボット上で,モデルフリーで動作する品質多様性アルゴリズムを用いる。
論文 参考訳(メタデータ) (2020-09-23T00:09:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。