論文の概要: Evolution and learning in differentiable robots
- arxiv url: http://arxiv.org/abs/2405.14712v2
- Date: Sun, 26 May 2024 17:24:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:59:12.368338
- Title: Evolution and learning in differentiable robots
- Title(参考訳): ロボットの進化と学習
- Authors: Luke Strgar, David Matthews, Tyler Hummer, Sam Kriegman,
- Abstract要約: 我々は、異なるシミュレーションを用いて、多数の候補体計画において、行動の個々の神経制御を迅速かつ同時に最適化する。
個体群における各ロボットの機械的構造の変化は,探索の外ループに遺伝的アルゴリズムを適用した。
シミュレーションで発見された非常に微分可能な形態の1つは、物理ロボットとして実現され、その最適化された振る舞いを維持できた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The automatic design of robots has existed for 30 years but has been constricted by serial non-differentiable design evaluations, premature convergence to simple bodies or clumsy behaviors, and a lack of sim2real transfer to physical machines. Thus, here we employ massively-parallel differentiable simulations to rapidly and simultaneously optimize individual neural control of behavior across a large population of candidate body plans and return a fitness score for each design based on the performance of its fully optimized behavior. Non-differentiable changes to the mechanical structure of each robot in the population -- mutations that rearrange, combine, add, or remove body parts -- were applied by a genetic algorithm in an outer loop of search, generating a continuous flow of novel morphologies with highly-coordinated and graceful behaviors honed by gradient descent. This enabled the exploration of several orders-of-magnitude more designs than all previous methods, despite the fact that robots here have the potential to be much more complex, in terms of number of independent motors, than those in prior studies. We found that evolution reliably produces ``increasingly differentiable'' robots: body plans that smooth the loss landscape in which learning operates and thereby provide better training paths toward performant behaviors. Finally, one of the highly differentiable morphologies discovered in simulation was realized as a physical robot and shown to retain its optimized behavior. This provides a cyberphysical platform to investigate the relationship between evolution and learning in biological systems and broadens our understanding of how a robot's physical structure can influence the ability to train policies for it. Videos and code at https://sites.google.com/view/eldir.
- Abstract(参考訳): ロボットの自動設計は30年前から存在するが、シリアルな非微分不可能な設計評価、単純体や不器用な動作への早めの収束、シム2リアルな物理機械への移動の欠如によって制限されている。
そこで本研究では, 大規模並列微分可能シミュレーションを用いて, 多数の候補体計画において, 行動の個々の神経制御を迅速かつ同時に最適化し, 完全に最適化された動作性能に基づく各設計に対する適合度スコアを返却する。
個体群における各ロボットの機械的構造に相違のない変化が、探索の外側ループにおいて遺伝的アルゴリズムによって応用され、高度に調整された優雅な行動によって導かれる新しい形態の連続的な流れが生成される。
これにより、ロボットは従来の研究よりも独立したモーターの数で、はるかに複雑になる可能性があるにもかかわらず、これまでのすべての方法よりも数桁のオーダーで多くのデザインを探索することが可能になった。
その結果,進化は「段階的に分化しやすい」ロボットを確実に生み出すことが明らかとなった。
最後に、シミュレーションで発見された非常に微分可能な形態の1つは、物理ロボットとして実現され、その最適化された振舞いを維持できた。
これは、生物学的システムにおける進化と学習の関係を調査し、ロボットの物理的構造が政策を訓練する能力にどのように影響するかを理解するためのサイバー物理プラットフォームを提供する。
ビデオとコードはhttps://sites.google.com/view/eldir.comにある。
関連論文リスト
- DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments [6.21540494241516]
大規模モバイルマルチロボットシステムは、堅牢性とスケーラビリティの可能性が高いため、モノリシックロボットよりも有益である。
マルチロボットシステムのためのコントローラの開発は、対話の多さが予測し難く、モデル化が難しいため、難しい。
本質的にモチベーションは報酬の特定の定式化を避け、好奇心などの異なるドライバで作業しようとする。
Swarmのロボットケースのユニークな利点は、Swarmのメンバーがロボットの環境に飛び込み、自己参照ループでより活発な行動を引き起こすことができることである。
論文 参考訳(メタデータ) (2024-05-04T06:25:58Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - Co-evolving morphology and control of soft robots using a single genome [0.0]
本稿では,ロボットの形態と制御を共進化させる新しい手法を提案する。
本手法は,1つのゲノムからエージェントの「脳」と「体」の両方を抽出し,それらを同時に開発する。
提案手法を4つのタスクで評価し,探索空間が大きくても1つのゲノムを持つと進化過程の収束が早くなることを示した。
論文 参考訳(メタデータ) (2022-12-22T07:34:31Z) - Severe Damage Recovery in Evolving Soft Robots through Differentiable
Programming [7.198483427085636]
そこで我々は,神経細胞オートマトンに基づくシステムを提案する。そこでは,ロボットが進化し,勾配に基づくトレーニングによって損傷から形態を再生する能力を与える。
結果として生じる神経細胞オートマトンは、深刻な形態的損傷を受けた後でも80%以上の機能を回復できる仮想ロボットを成長させることができる。
論文 参考訳(メタデータ) (2022-06-14T08:05:42Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Environmental Adaptation of Robot Morphology and Control through
Real-world Evolution [5.08706161686979]
機械的に自己再構成された四足歩行ロボットに形態学と制御の組み合わせを得るために進化探索を適用した。
2つの異なる物理曲面上の解を進化させ、制御と形態の両方の観点から結果を解析する。
論文 参考訳(メタデータ) (2020-03-30T07:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。