論文の概要: Explainable Interface for Human-Autonomy Teaming: A Survey
- arxiv url: http://arxiv.org/abs/2405.02583v1
- Date: Sat, 4 May 2024 06:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:20:44.594324
- Title: Explainable Interface for Human-Autonomy Teaming: A Survey
- Title(参考訳): ヒューマン・オートノミー・チームのための説明可能なインターフェース:調査
- Authors: Xiangqi Kong, Yang Xing, Antonios Tsourdos, Ziyue Wang, Weisi Guo, Adolfo Perrusquia, Andreas Wikander,
- Abstract要約: 本稿では,HATシステムにおける説明可能なインタフェース(EI)の未探索領域について考察する。
我々は,XAI強化HATシステムにおけるEIの設計,開発,評価について検討する。
私たちは、HATのユニークな課題に対処する、EIのための新しいフレームワークにコントリビュートします。
- 参考スコア(独自算出の注目度): 12.26178592621411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, large-scale foundation models are being increasingly integrated into numerous safety-critical applications, including human-autonomy teaming (HAT) within transportation, medical, and defence domains. Consequently, the inherent 'black-box' nature of these sophisticated deep neural networks heightens the significance of fostering mutual understanding and trust between humans and autonomous systems. To tackle the transparency challenges in HAT, this paper conducts a thoughtful study on the underexplored domain of Explainable Interface (EI) in HAT systems from a human-centric perspective, thereby enriching the existing body of research in Explainable Artificial Intelligence (XAI). We explore the design, development, and evaluation of EI within XAI-enhanced HAT systems. To do so, we first clarify the distinctions between these concepts: EI, explanations and model explainability, aiming to provide researchers and practitioners with a structured understanding. Second, we contribute to a novel framework for EI, addressing the unique challenges in HAT. Last, our summarized evaluation framework for ongoing EI offers a holistic perspective, encompassing model performance, human-centered factors, and group task objectives. Based on extensive surveys across XAI, HAT, psychology, and Human-Computer Interaction (HCI), this review offers multiple novel insights into incorporating XAI into HAT systems and outlines future directions.
- Abstract(参考訳): 今日では、交通、医療、防衛分野におけるヒューマン・オートノミー・チームリング(HAT)など、多数の安全クリティカルな応用に、大規模な基礎モデルが組み込まれている。
したがって、これらの洗練されたディープニューラルネットワークの固有の「ブラックボックス」の性質は、人間と自律システム間の相互理解と信頼を促進する重要性を高める。
本稿では,HATシステムにおける説明可能なインタフェース(EI)の未解明領域を人間中心の視点で考察し,説明可能な人工知能(XAI)における既存の研究体系を充実させる。
我々は,XAI強化HATシステムにおけるEIの設計,開発,評価について検討する。
そこで我々はまず,これらの概念の区別を明らかにする。 EI, 説明, モデル説明可能性であり, 研究者や実践者に構造化された理解を提供することを目的としている。
第2に、HATにおけるユニークな課題に対処するため、EIのための新しいフレームワークにコントリビュートする。
最後に、現在進行中のEI評価フレームワークを要約し、モデルパフォーマンス、人間中心の要因、グループタスクの目的を包含した総合的な視点を提供する。
このレビューは、XAI、HAT、心理学、ヒューマン・コンピュータ・インタラクション(HCI)の広範な調査に基づいて、XAIをHATシステムに組み込むための新しい洞察を提供し、今後の方向性を概説する。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Evaluating Human-AI Collaboration: A Review and Methodological Framework [4.41358655687435]
人間-AIコラボレーション(Human-AI Collaboration、HAIC)として知られる個人との作業環境における人工知能(AI)の利用が不可欠である。
HAICの有効性を評価することは、関連するコンポーネントの複雑な相互作用のため、依然として困難である。
本稿では,既存のHAIC評価手法を詳細に分析し,これらのシステムをより効果的に評価するための新しいパラダイムを開発する。
論文 参考訳(メタデータ) (2024-07-09T12:52:22Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap [4.2330023661329355]
本研究は、説明生成とプレゼンテーションに関連する複雑さについて論じるものである。
私たちのロードマップは、責任ある研究とイノベーションの原則によって支えられています。
これらの研究の方向性を探ることで、説明可能なAVの開発と展開の指針となる。
論文 参考訳(メタデータ) (2024-03-19T11:43:41Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Neurosymbolic Value-Inspired AI (Why, What, and How) [8.946847190099206]
本稿では,VAI(Value-Inspired AI)というニューロシンボリック・コンピューティング・フレームワークを提案する。
VAIは、人間の価値の様々な次元を表現し、統合することを目的としている。
我々は、この方向における現在の進歩についての洞察を提供し、この分野の将来的な方向性について概説する。
論文 参考訳(メタデータ) (2023-12-15T16:33:57Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
人工知能(AI)システムのロバスト性はいまだ解明されておらず、大規模な採用を妨げる重要な問題となっている。
本稿では,基本的・応用的両面から文献を整理・記述する3つの概念を紹介する。
我々は、人間が提供できる必要な知識を考慮して、AIの堅牢性を評価し、向上する上で、人間の中心的な役割を強調します。
論文 参考訳(メタデータ) (2022-10-17T10:00:51Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。