論文の概要: A Conformal Prediction Score that is Robust to Label Noise
- arxiv url: http://arxiv.org/abs/2405.02648v2
- Date: Tue, 21 May 2024 13:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:52:56.608386
- Title: A Conformal Prediction Score that is Robust to Label Noise
- Title(参考訳): ラベルノイズに対するロバストな等角予測スコア
- Authors: Coby Penso, Jacob Goldberger,
- Abstract要約: ラベルノイズに頑健なコンフォメーションスコアを導入する。
ノイズラベル付きデータとノイズレベルを用いて、ノイズフリーコンフォメーションスコアを推定する。
提案手法は,予測セットの平均サイズにおいて,現在の手法よりも大きなマージンで優れていることを示す。
- 参考スコア(独自算出の注目度): 13.22445242068721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal Prediction (CP) quantifies network uncertainty by building a small prediction set with a pre-defined probability that the correct class is within this set. In this study we tackle the problem of CP calibration based on a validation set with noisy labels. We introduce a conformal score that is robust to label noise. The noise-free conformal score is estimated using the noisy labeled data and the noise level. In the test phase the noise-free score is used to form the prediction set. We applied the proposed algorithm to several standard medical imaging classification datasets. We show that our method outperforms current methods by a large margin, in terms of the average size of the prediction set, while maintaining the required coverage.
- Abstract(参考訳): コンフォーマル予測(CP)は、このセット内に正しいクラスが存在するという事前定義された確率を持つ小さな予測セットを構築することで、ネットワークの不確実性を定量化する。
本研究では,雑音ラベル付き検証セットに基づくCP校正問題に取り組む。
ラベルノイズに頑健なコンフォメーションスコアを導入する。
ノイズラベル付きデータとノイズレベルを用いて、ノイズフリーコンフォメーションスコアを推定する。
テストフェーズでは、ノイズフリースコアを使用して予測セットを形成する。
提案アルゴリズムをいくつかの標準医用画像分類データセットに適用した。
提案手法は,必要なカバレッジを維持しつつ,予測セットの平均サイズの観点から,現在の手法よりも大きなマージンで優れていることを示す。
関連論文リスト
- A conformalized learning of a prediction set with applications to medical imaging classification [14.304858613146536]
本稿では,真のラベルを含む予測セットをユーザが特定した確率で生成するアルゴリズムを提案する。
提案アルゴリズムをいくつかの標準医用画像分類データセットに適用した。
論文 参考訳(メタデータ) (2024-08-09T12:49:04Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Learning to Correct Noisy Labels for Fine-Grained Entity Typing via
Co-Prediction Prompt Tuning [9.885278527023532]
FETにおける雑音補正のためのコプレディション・プロンプト・チューニングを提案する。
ラベル付きラベルをリコールするために予測結果を統合し、区別されたマージンを用いて不正確なラベルを識別する。
広範に使われている3つのFETデータセットの実験結果から,我々のノイズ補正アプローチはトレーニングサンプルの品質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-10-23T06:04:07Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
予測セットは、個々のラベルではなくラベルのセットを予測することによって不確実性を捉える。
ラベルシフト設定においてPAC保証付き予測セットを構築するための新しいアルゴリズムを提案する。
提案手法を5つのデータセットで評価する。
論文 参考訳(メタデータ) (2023-10-19T17:57:57Z) - Label Noise: Correcting the Forward-Correction [0.0]
ラベルノイズのあるデータセット上でニューラルネットワーク分類器を訓練することは、ノイズのあるラベルに過度に適合するリスクをもたらす。
ラベルノイズによる過度適合に対処する手法を提案する。
本研究は, オーバーフィッティングを緩和するために, トレーニング損失に低い限界を課すことを提案する。
論文 参考訳(メタデータ) (2023-07-24T19:41:19Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Towards Robustness to Label Noise in Text Classification via Noise
Modeling [7.863638253070439]
NLPの大規模なデータセットは、誤った自動および人間のアノテーション手順のために、ノイズの多いラベルに悩まされる。
本稿では,ラベルノイズを用いたテキスト分類の問題について検討し,分類器上での補助雑音モデルを用いてこのノイズを捉えることを目的とする。
論文 参考訳(メタデータ) (2021-01-27T05:41:57Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
ラベルノイズの存在は、しばしばディープニューラルネットワークのトレーニングを誤解させる。
人間による注釈付きラベルのエラーは、タスクの難易度レベルに依存する可能性が高いことを示しています。
論文 参考訳(メタデータ) (2020-12-22T06:36:58Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。