論文の概要: Robust Online Conformal Prediction under Uniform Label Noise
- arxiv url: http://arxiv.org/abs/2501.18363v2
- Date: Mon, 03 Feb 2025 02:27:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 12:43:25.143965
- Title: Robust Online Conformal Prediction under Uniform Label Noise
- Title(参考訳): 一様ラベル雑音下でのロバストオンラインコンフォーマル予測
- Authors: Huajun Xi, Kangdao Liu, Hao Zeng, Wenguang Sun, Hongxin Wei,
- Abstract要約: 本研究では,一様ラベル雑音下でのオンラインコンフォメーション予測のロバスト性について検討する。
本稿では,新しいロバストなピンボール損失で閾値を更新することで,ノイズロバストオンラインコンフォーマル予測(NR-OCP)を提案する。
理論解析により,NR-OCPは一定の学習率と動的学習率の両方のスケジュールのカバレッジギャップをなくすことが示されている。
- 参考スコア(独自算出の注目度): 10.059818934854038
- License:
- Abstract: Conformal prediction is an emerging technique for uncertainty quantification that constructs prediction sets guaranteed to contain the true label with a predefined probability. Recent work develops online conformal prediction methods that adaptively construct prediction sets to accommodate distribution shifts. However, existing algorithms typically assume perfect label accuracy which rarely holds in practice. In this work, we investigate the robustness of online conformal prediction under uniform label noise with a known noise rate, in both constant and dynamic learning rate schedules. We show that label noise causes a persistent gap between the actual mis-coverage rate and the desired rate $\alpha$, leading to either overestimated or underestimated coverage guarantees. To address this issue, we propose Noise Robust Online Conformal Prediction (dubbed NR-OCP) by updating the threshold with a novel robust pinball loss, which provides an unbiased estimate of clean pinball loss without requiring ground-truth labels. Our theoretical analysis shows that NR-OCP eliminates the coverage gap in both constant and dynamic learning rate schedules, achieving a convergence rate of $\mathcal{O}(T^{-1/2})$ for both empirical and expected coverage errors under uniform label noise. Extensive experiments demonstrate the effectiveness of our method by achieving both precise coverage and improved efficiency.
- Abstract(参考訳): コンフォーマル予測(Conformal prediction)は、事前定義された確率を持つ真のラベルを含むことが保証された予測セットを構成する不確実な定量化のための新興技術である。
最近の研究は、分布シフトに対応するための予測セットを適応的に構築するオンライン共形予測手法を開発している。
しかし、既存のアルゴリズムは、実際にはほとんど持たない完璧なラベルの精度を前提としている。
本研究では,一様ラベル付き雑音下でのオンライン共形予測のロバスト性について,定常および動的学習率の両スケジュールで検討する。
ラベルノイズが実際の誤認率と所望の$\alpha$との間に持続的なギャップを生じさせ、過大評価または過小評価のカバレッジ保証につながることを示す。
そこで本稿では, ノイズロバストオンラインコンフォーマル予測(NR-OCP)について, 新たなロバストなピンボール損失でしきい値を更新して提案する。
理論解析により,NR-OCPは定値および動的学習率の両スケジュールのカバレッジギャップを排除し,一様ラベル雑音下での予測被覆誤差と経験的誤差の両方に対して$\mathcal{O}(T^{-1/2})$の収束率を達成できることが示された。
広範囲な実験により,精度の高いカバレッジと効率の向上を両立させることにより,本手法の有効性を実証した。
関連論文リスト
- Verifiably Robust Conformal Prediction [1.391198481393699]
本稿では、ニューラルネットワーク検証手法を利用して、敵攻撃時のカバレッジ保証を回復する新しいフレームワークであるVRCP(Verifiably Robust Conformal Prediction)を紹介する。
私たちのメソッドは、回帰タスクだけでなく、$ell1$, $ell2$, $ellinfty$といった任意のノルムで束縛された摂動をサポートする最初の方法です。
いずれの場合も、VRCPは名目上の範囲を達成し、SotAよりもはるかに効率的で情報的な予測領域が得られる。
論文 参考訳(メタデータ) (2024-05-29T09:50:43Z) - A Conformal Prediction Score that is Robust to Label Noise [13.22445242068721]
ラベルノイズに頑健なコンフォメーションスコアを導入する。
ノイズラベル付きデータとノイズレベルを用いて、ノイズフリーコンフォメーションスコアを推定する。
提案手法は,予測セットの平均サイズにおいて,現在の手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-05-04T12:22:02Z) - Provably Robust Conformal Prediction with Improved Efficiency [29.70455766394585]
コンフォーマル予測は、保証されたカバレッジで不確実性セットを生成する強力なツールである。
逆の例は、不正なカバレッジ率の予測セットを構築するために共形メソッドを操作することができる。
本稿では,PTT(Post-Training Transformation)とRCT(Robust Conformal Training)という2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-30T15:49:01Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
我々は、予測の不確実性の下で公正な機械学習(ML)を研究し、信頼性と信頼性のある意思決定を可能にする。
本研究は,(1)類似した結果の異なる集団に対するカバー率が近いこと,(2)人口全体のカバー率が一定水準にあること,の2つの特性を達成することを目的としたカバーの平等機会(EOC)を提案する。
論文 参考訳(メタデータ) (2023-11-03T21:19:59Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
予測セットは、個々のラベルではなくラベルのセットを予測することによって不確実性を捉える。
ラベルシフト設定においてPAC保証付き予測セットを構築するための新しいアルゴリズムを提案する。
提案手法を5つのデータセットで評価する。
論文 参考訳(メタデータ) (2023-10-19T17:57:57Z) - Is your noise correction noisy? PLS: Robustness to label noise with two
stage detection [16.65296285599679]
本報告では, ノイズが検出された場合に, ノイズの補正精度を向上させることを提案する。
多くの最先端コントリビューションでは、修正された擬似ラベルを推測する前にノイズサンプルを検出する2段階のアプローチが採用されている。
ノイズサンプルの擬似ラベルの正しさと強く相関する単純な測度である擬似ロスを提案する。
論文 参考訳(メタデータ) (2022-10-10T11:32:28Z) - Label Noise Robustness of Conformal Prediction [24.896717715256358]
本研究では,不確実性定量化のための強力なツールである共形予測のロバスト性について検討した。
我々の分析は回帰問題と分類問題の両方に対処する。
我々は理論を拡張し、一般損失関数を正しく制御するための要件を定式化する。
論文 参考訳(メタデータ) (2022-09-28T17:59:35Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
2つの経路による分類問題に対する不確実性定量化(UQ)に焦点を当てる。
まず、ラベルシフトはカバレッジとキャリブレーションの低下を示すことでuqを損なうと論じる。
これらの手法を, 理論上, 分散性のない枠組みで検討し, その優れた実用性を示す。
論文 参考訳(メタデータ) (2021-03-04T20:51:03Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
最近のランダムな平滑化技術は、最悪の$ell$-robustnessを平均ケースのロバストネスに変換することができることを示している。
その結果,スムーズな分類器の精度と信頼性の高いロバスト性とのトレードオフは,ノイズに対する予測一貫性の規則化によって大きく制御できることが判明した。
論文 参考訳(メタデータ) (2020-06-07T06:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。