Identification of Novel Modes in Generative Models via Fourier-based Differential Clustering
- URL: http://arxiv.org/abs/2405.02700v2
- Date: Fri, 5 Jul 2024 03:11:17 GMT
- Title: Identification of Novel Modes in Generative Models via Fourier-based Differential Clustering
- Authors: Jingwei Zhang, Mohammad Jalali, Cheuk Ting Li, Farzan Farnia,
- Abstract summary: We propose a method called Fourier-based Identification of Novel Clusters (FINC) to identify modes produced by a generative model with a higher frequency.
We demonstrate the application of FINC to large-scale computer vision datasets and generative model frameworks.
- Score: 33.22153760327227
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: An interpretable comparison of generative models requires the identification of sample types produced more frequently by each of the involved models. While several quantitative scores have been proposed in the literature to rank different generative models, such score-based evaluations do not reveal the nuanced differences between the generative models in capturing various sample types. In this work, we attempt to solve a differential clustering problem to detect sample types expressed differently by two generative models. To solve the differential clustering problem, we propose a method called Fourier-based Identification of Novel Clusters (FINC) to identify modes produced by a generative model with a higher frequency in comparison to a reference distribution. FINC provides a scalable stochastic algorithm based on random Fourier features to estimate the eigenspace of kernel covariance matrices of two generative models and utilize the principal eigendirections to detect the sample types present more dominantly in each model. We demonstrate the application of the FINC method to large-scale computer vision datasets and generative model frameworks. Our numerical results suggest the scalability of the developed Fourier-based method in highlighting the sample types produced with different frequencies by widely-used generative models. Code is available at \url{https://github.com/buyeah1109/FINC}
Related papers
- An Interpretable Evaluation of Entropy-based Novelty of Generative Models [36.29214321258605]
We propose a Kernel-based Entropic Novelty (KEN) score to quantify the mode-based novelty of generative models.
We present numerical results on synthetic and real image datasets, indicating the framework's effectiveness in detecting novel modes.
arXiv Detail & Related papers (2024-02-27T08:00:52Z) - Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data [0.8499685241219366]
A class of eight parsimonious mixture models based on the mixtures of factor analyzers model are introduced.
The proposed models are explored in the context of clustering discrete data arising from RNA sequencing studies.
arXiv Detail & Related papers (2023-11-13T21:23:15Z) - Diverse Counterfactual Explanations for Anomaly Detection in Time Series [26.88575131193757]
We propose a model-agnostic algorithm that generates counterfactual ensemble explanations for time series anomaly detection models.
Our method generates a set of diverse counterfactual examples, i.e., multiple versions of the original time series that are not considered anomalous by the detection model.
Our algorithm is applicable to any differentiable anomaly detection model.
arXiv Detail & Related papers (2022-03-21T16:30:34Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
We show that this approach outperforms generic samplers in a number of difficult settings.
We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data.
arXiv Detail & Related papers (2021-02-08T20:08:50Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z) - Ensemble Forecasting of Monthly Electricity Demand using Pattern
Similarity-based Methods [0.0]
This work presents ensemble forecasting of monthly electricity demand using pattern similarity-based forecasting methods (PSFMs)
PSFMs applied in this study include $k$-nearest neighbor model, fuzzy neighborhood model, kernel regression model, and general regression neural network.
An empirical illustration applies the ensemble models as well as individual PSFMs for comparison to the monthly electricity demand forecasting for 35 European countries.
arXiv Detail & Related papers (2020-03-29T17:26:58Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z) - Blocked Clusterwise Regression [0.0]
We generalize previous approaches to discrete unobserved heterogeneity by allowing each unit to have multiple latent variables.
We contribute to the theory of clustering with an over-specified number of clusters and derive new convergence rates for this setting.
arXiv Detail & Related papers (2020-01-29T23:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.