論文の概要: Sub-goal Distillation: A Method to Improve Small Language Agents
- arxiv url: http://arxiv.org/abs/2405.02749v1
- Date: Sat, 4 May 2024 20:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:30:11.548360
- Title: Sub-goal Distillation: A Method to Improve Small Language Agents
- Title(参考訳): サブゴール蒸留 : 小言語エージェントの改良手法
- Authors: Maryam Hashemzadeh, Elias Stengel-Eskin, Sarath Chandar, Marc-Alexandre Cote,
- Abstract要約: 大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
- 参考スコア(独自算出の注目度): 21.815417165548187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks, their substantial computational requirements and restricted number of calls constrain their practical utility, especially in long-horizon interactive tasks such as decision-making or in scenarios involving continuous ongoing tasks. To address these constraints, we propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model (770M parameters). Our approach involves constructing a hierarchical agent comprising a planning module, which learns through Knowledge Distillation from an LLM to generate sub-goals, and an execution module, which learns to accomplish these sub-goals using elementary actions. In detail, we leverage an LLM to annotate an oracle path with a sequence of sub-goals towards completing a goal. Subsequently, we utilize this annotated data to fine-tune both the planning and execution modules. Importantly, neither module relies on real-time access to an LLM during inference, significantly reducing the overall cost associated with LLM interactions to a fixed cost. In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7% (absolute). Our analysis highlights the efficiency of our approach compared to other LLM-based methods. Our code and annotated data for distillation can be found on GitHub.
- Abstract(参考訳): 大規模言語モデル(LLM)は対話型タスクのエージェントとして大きな可能性を証明してきたが、その相当な計算要件と制限された呼び出し数は、特に意思決定のような長期的対話型タスクや継続的なタスクを含むシナリオにおいて、その実用性を制限している。
これらの制約に対処するために,数十億のパラメータを持つLLMの性能を,より小さな言語モデル(770Mパラメータ)に転送する手法を提案する。
提案手法では,LLMから知識蒸留を学習してサブゴールを生成する計画モジュールと,基本動作を用いてこれらのサブゴールを学習する実行モジュールから構成される階層的エージェントを構築する。
より詳しくは、LLMを利用して、目標を達成するための一連のサブゴールでオラクルパスに注釈を付ける。
その後、この注釈付きデータを使用して、計画モジュールと実行モジュールの両方を微調整します。
重要なことは、どちらのモジュールも推論中にLLMへのリアルタイムアクセスに依存しておらず、LLMの相互作用に関連する全体的なコストを固定コストに大幅に削減する。
難易度とマルチタスクの対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%(絶対的)で上回っている。
我々の分析は、他のLCM法と比較して、我々のアプローチの効率性を強調している。
私たちのコードと蒸留のための注釈付きデータはGitHubで参照できます。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - StateAct: State Tracking and Reasoning for Acting and Planning with Large Language Models [10.359008237358603]
対話型環境における大規模言語モデル(LLM)を用いたリアルタスクの計画と実行が,AI手法の新たなフロンティアとなっている。
LLMの計画と動作のための状態追跡によるチェーン・オブ・シントの強化を目的とした,数発のインコンテキスト学習のみに基づく簡易な手法を提案する。
論文 参考訳(メタデータ) (2024-09-21T05:54:35Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。