論文の概要: Interactive and Expressive Code-Augmented Planning with Large Language Models
- arxiv url: http://arxiv.org/abs/2411.13826v1
- Date: Thu, 21 Nov 2024 04:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:24.696290
- Title: Interactive and Expressive Code-Augmented Planning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた対話型・表現型コード拡張計画
- Authors: Anthony Z. Liu, Xinhe Wang, Jacob Sansom, Yao Fu, Jongwook Choi, Sungryull Sohn, Jaekyeom Kim, Honglak Lee,
- Abstract要約: 大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
- 参考スコア(独自算出の注目度): 62.799579304821826
- License:
- Abstract: Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making, but often struggle with complex, long-horizon planning tasks. Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance. These techniques include using variables (to track important information) and functions (to divide complex tasks into smaller re-usable sub-tasks). However, purely code-based approaches can be error-prone and insufficient for handling ambiguous or unstructured data. To address these challenges, we propose REPL-Plan, an LLM planning approach that is fully code-expressive (it can utilize all the benefits of code) while also being dynamic (it can flexibly adapt from errors and use the LLM for fuzzy situations). In REPL-Plan, an LLM solves tasks by interacting with a Read-Eval-Print Loop (REPL), which iteratively executes and evaluates code, similar to language shells or interactive code notebooks, allowing the model to flexibly correct errors and handle tasks dynamically. We demonstrate that REPL-Plan achieves strong results across various planning domains compared to previous methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は、常識的な推論と対話的な意思決定において強力な能力を示すが、しばしば複雑な長期計画タスクに苦しむ。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
これらのテクニックには、変数(重要な情報を追跡するために)と関数(複雑なタスクをより小さな再利用可能なサブタスクに分割するために)の使用が含まれる。
しかし、純粋にコードベースのアプローチはエラーを起こしやすく、曖昧なデータや非構造化データを扱うには不十分である。
これらの課題に対処するため、私たちは、完全なコード表現(コードのすべての利点を利用できる)で、動的(エラーから柔軟に適応し、ファジィな状況にLLMを使用することができる)なLEPLプランニングアプローチであるREPL-Planを提案します。
REPL-Plan では、LLM は Read-Eval-Print Loop (REPL) と対話することでタスクを解決する。
本稿では,REPL-Planが従来の手法と比較して,様々な計画領域にまたがって強い結果をもたらすことを示す。
関連論文リスト
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
長期計画には不確実性蓄積、計算複雑性、遅延報酬、不完全情報といった課題が伴う。
本研究では,タスク階層を人間の指示から活用し,マルチロボット計画を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
大規模言語モデル(LLM)は、多段階の推論や目標指向の計画を必要とするタスクに悩まされることが多い。
本稿では,特殊モジュールの反復的相互作用によって計画が達成されるエージェントアーキテクチャ,MAPを提案する。
MAPは両方の標準LLM法よりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T00:10:14Z) - Dynamic Planning with a LLM [15.430182858130884]
大言語モデル(LLM)はゼロショット設定で多くのNLPタスクを解くことができるが、具体化エージェントを含むアプリケーションは依然として問題である。
LLM動的プランナー(LLM-DP)は,LLMが従来のプランナーと手動で作業し,具体的課題を解決する,神経象徴的な枠組みである。
論文 参考訳(メタデータ) (2023-08-11T21:17:13Z) - Learning to Plan with Natural Language [111.76828049344839]
大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示している。
複雑なタスクを完了するためには、ステップごとに特定のソリューションを生成するためにLCMをガイドするタスクの計画が必要です。
本研究では,(1)第1学習課題計画フェーズにおいて,LCMが学習エラーフィードバックから導出するように促した新たなステップバイステップのソリューションと行動指示を用いてタスク計画を反復的に更新する,という2つの段階を含む学習計画手法を提案する。
論文 参考訳(メタデータ) (2023-04-20T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。