論文の概要: Deep Image Restoration For Image Anti-Forensics
- arxiv url: http://arxiv.org/abs/2405.02751v1
- Date: Sat, 4 May 2024 20:49:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:30:11.542991
- Title: Deep Image Restoration For Image Anti-Forensics
- Title(参考訳): Image Anti-forensicsのためのDeep Image Restoration
- Authors: Eren Tahir, Mert Bal,
- Abstract要約: JPEG圧縮、ぼかし、ノイズ付けは、長い間、反法医学に使われてきた。
偽画像の検出を困難にし、深部画像偽画像検出モデルのトレーニングにデータ拡張に使用される。
これらの痕跡を検出するために、別の画像鑑定法も開発されている。
本研究では, 深部画像復元モデルを用いて, さらに一歩進めて, 画質の向上を図る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While image forensics is concerned with whether an image has been tampered with, image anti-forensics attempts to prevent image forensics methods from detecting tampered images. The competition between these two fields started long before the advancement of deep learning. JPEG compression, blurring and noising, which are simple methods by today's standards, have long been used for anti-forensics and have been the subject of much research in both forensics and anti-forensics. Although these traditional methods are old, they make it difficult to detect fake images and are used for data augmentation in training deep image forgery detection models. In addition to making the image difficult to detect, these methods leave traces on the image and consequently degrade the image quality. Separate image forensics methods have also been developed to detect these traces. In this study, we go one step further and improve the image quality after these methods with deep image restoration models and make it harder to detect the forged image. We evaluate the impact of these methods on image quality. We then test both our proposed methods with deep learning and methods without deep learning on the two best existing image manipulation detection models. In the obtained results, we show how existing image forgery detection models fail against the proposed methods. Code implementation will be publicly available at https://github.com/99eren99/DIRFIAF .
- Abstract(参考訳): 画像鑑定は、画像が改ざんされたかどうかを懸念する一方で、画像鑑定法が改ざんされた画像を検出するのを防ぐために画像鑑定を試みている。
この2つの分野の競争は、深層学習の進展よりずっと前に始まった。
JPEG圧縮、曖昧化、ノイズ化は、今日の標準の単純な方法であり、長い間、反法医学に使われており、法医学と反法医学の両方で多くの研究の対象となっている。
これらの従来の手法は古いが、偽画像の検出が困難になり、深層画像偽造検出モデルの訓練にデータ拡張に使用される。
画像の検出を困難にすることに加えて、これらの手法は画像に痕跡を残して画質を劣化させる。
これらの痕跡を検出するために、別の画像鑑定法も開発されている。
本研究では, 深部画像復元モデルを用いて, さらに一歩進んで画像品質を向上し, 鍛造画像の検出を困難にしている。
これらの手法が画質に与える影響を評価する。
次に、既存の2つの最良の画像操作検出モデルについて、深層学習と深層学習を併用して、提案手法を試験する。
その結果,既存の画像偽造検出モデルが提案手法に反することを示す。
コードの実装はhttps://github.com/99eren99/DIRFIAFで公開される。
関連論文リスト
- Detecting AutoEncoder is Enough to Catch LDM Generated Images [0.0]
本稿では,自己エンコーダが導入したアーティファクトを識別することで,LDM(Latent Diffusion Models)によって生成された画像を検出する手法を提案する。
LDMオートエンコーダによって再構成された画像と実際の画像とを区別するように検出器を訓練することにより、直接トレーニングすることなく、生成された画像を検出することができる。
実験の結果,最小限の偽陽性で高い検出精度を示し,この手法は偽画像と戦うための有望なツールとなる。
論文 参考訳(メタデータ) (2024-11-10T12:17:32Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - Diffusion models meet image counter-forensics [0.8192907805418583]
拡散浄化法は反法医学的タスクに適していることを示す。
このようなアプローチは、法医学的手法の無効化と、精製された画像の自然な外観の保存において、既に存在する反法医学的手法より優れている。
論文 参考訳(メタデータ) (2023-11-22T18:59:51Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Building an Invisible Shield for Your Portrait against Deepfakes [34.65356811439098]
本稿では,画像のプロアクティブな保護を目的とした新しいフレームワーク,Integity Encryptorを提案する。
提案手法では,重要な顔属性と密接な関係を持つメッセージを,秘密に符号化する。
修正された顔属性は、デコードされたメッセージの比較を通じて、操作された画像を検出する手段として機能する。
論文 参考訳(メタデータ) (2023-05-22T10:01:28Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
画像操作の検出とローカライズを行うObjectFormerを提案する。
画像の高周波特徴を抽出し,マルチモーダルパッチの埋め込みとしてRGB特徴と組み合わせる。
各種データセットについて広範な実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-28T12:27:34Z) - Detecting and Localizing Copy-Move and Image-Splicing Forgery [0.0]
本稿では、ディープラーニングと画像変換の両方を用いて、画像が改ざんされているかどうかを検出する方法に焦点を当てる。
次に、画像の改ざん領域を特定し、対応するマスクを予測する。
結果に基づいて、偽造を検知し識別するより堅牢なフレームワークを実現するための提案とアプローチが提供される。
論文 参考訳(メタデータ) (2022-02-08T01:14:30Z) - What makes fake images detectable? Understanding properties that
generalize [55.4211069143719]
深層ネットワークは、博士画像の微妙なアーティファクトを拾い上げることができる。
我々は、偽画像のどの特性が検出可能かを理解することを模索する。
検出可能な特性を誇張する手法を示す。
論文 参考訳(メタデータ) (2020-08-24T17:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。