論文の概要: Detecting AutoEncoder is Enough to Catch LDM Generated Images
- arxiv url: http://arxiv.org/abs/2411.06441v1
- Date: Sun, 10 Nov 2024 12:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:12.094974
- Title: Detecting AutoEncoder is Enough to Catch LDM Generated Images
- Title(参考訳): オートエンコーダの検出はLDM生成画像のキャッチに十分である
- Authors: Dmitry Vesnin, Dmitry Levshun, Andrey Chechulin,
- Abstract要約: 本稿では,自己エンコーダが導入したアーティファクトを識別することで,LDM(Latent Diffusion Models)によって生成された画像を検出する手法を提案する。
LDMオートエンコーダによって再構成された画像と実際の画像とを区別するように検出器を訓練することにより、直接トレーニングすることなく、生成された画像を検出することができる。
実験の結果,最小限の偽陽性で高い検出精度を示し,この手法は偽画像と戦うための有望なツールとなる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent years, diffusion models have become one of the main methods for generating images. However, detecting images generated by these models remains a challenging task. This paper proposes a novel method for detecting images generated by Latent Diffusion Models (LDM) by identifying artifacts introduced by their autoencoders. By training a detector to distinguish between real images and those reconstructed by the LDM autoencoder, the method enables detection of generated images without directly training on them. The novelty of this research lies in the fact that, unlike similar approaches, this method does not require training on synthesized data, significantly reducing computational costs and enhancing generalization ability. Experimental results show high detection accuracy with minimal false positives, making this approach a promising tool for combating fake images.
- Abstract(参考訳): 近年,拡散モデルが画像生成の主要な手法の1つとなっている。
しかし、これらのモデルによって生成された画像を検出することは依然として難しい課題である。
本稿では,自己エンコーダが導入したアーティファクトを識別することで,LDM(Latent Diffusion Models)によって生成された画像を検出する手法を提案する。
LDMオートエンコーダによって再構成された画像と実際の画像とを区別するように検出器を訓練することにより、直接トレーニングすることなく、生成された画像を検出することができる。
この研究の新規性は、類似のアプローチとは異なり、この手法が合成データのトレーニングを必要とせず、計算コストを大幅に削減し、一般化能力を向上させるという事実にある。
実験の結果,最小限の偽陽性で高い検出精度を示し,この手法は偽画像と戦うための有望なツールとなる。
関連論文リスト
- On the Effectiveness of Dataset Alignment for Fake Image Detection [28.68129042301801]
優れた検出器は、セマンティックコンテンツ、解像度、ファイルフォーマットなどの画像特性を無視しながら、生成モデル指紋に焦点を当てるべきである。
この研究では、これらのアルゴリズムの選択に加えて、堅牢な検出器をトレーニングするためには、リアル/フェイク画像の整列したデータセットも必要である、と論じる。
そこで本研究では, LDMの家族に対して, LDMのオートエンコーダを用いて実画像の再構成を行う手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T17:58:07Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - FakeInversion: Learning to Detect Images from Unseen Text-to-Image Models by Inverting Stable Diffusion [18.829659846356765]
本稿では,オープンソース事前学習型安定拡散モデルを用いて得られた特徴を用いた新しい合成画像検出器を提案する。
これらの逆転により、検出器は高視力の未確認発電機によく一般化できることが示される。
本稿では, 逆画像探索を用いて, 検出器評価におけるスタイリスティックおよびテーマバイアスを緩和する, 新たな挑戦的評価プロトコルを提案する。
論文 参考訳(メタデータ) (2024-06-12T19:14:58Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error [15.46508882889489]
計算コストの低い高解像度画像を生成するための重要なイネーブルは、潜時拡散モデル(LDM)の開発である。
LDMは、高次元画像空間の代わりに、事前訓練されたオートエンコーダ(AE)の低次元潜時空間で復調処理を行う。
本稿では,画像と潜時空間間の画像変換に用いるAEという,LDMの固有成分を利用した新しい検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T14:36:49Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-03-19T20:31:38Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
拡散再構成誤り(DIRE)という新しい表現を提案する。
DIREは、予め訓練された拡散モデルにより、入力画像とその再構成画像間の誤差を測定する。
DIREは生成されたイメージと実際のイメージを区別するためのブリッジとして機能する、というヒントを提供する。
論文 参考訳(メタデータ) (2023-03-16T13:15:03Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。