論文の概要: Kinematic analysis of structural mechanics based on convolutional neural network
- arxiv url: http://arxiv.org/abs/2405.02807v1
- Date: Sun, 5 May 2024 04:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:10:30.172107
- Title: Kinematic analysis of structural mechanics based on convolutional neural network
- Title(参考訳): 畳み込みニューラルネットワークに基づく構造力学の運動解析
- Authors: Leye Zhang, Xiangxiang Tian, Hongjun Zhang,
- Abstract要約: フレームワークとKerasディープラーニングプラットフォームに基づく畳み込みニューラルネットワークモデルを構築した。
モデルは、トレーニングセット、検証セット、テストセットで100%精度を達成する。
可視化技術を用いて、畳み込みニューラルネットワークがどのように構造的特徴を学び、認識するかを明らかにする。
- 参考スコア(独自算出の注目度): 1.5496299906248863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attempt to use convolutional neural network to achieve kinematic analysis of plane bar structure. Through 3dsMax animation software and OpenCV module, self-build image dataset of geometrically stable system and geometrically unstable system. we construct and train convolutional neural network model based on the TensorFlow and Keras deep learning platform framework. The model achieves 100% accuracy on the training set, validation set, and test set. The accuracy on the additional test set is 93.7%, indicating that convolutional neural network can learn and master the relevant knowledge of kinematic analysis of structural mechanics. In the future, the generalization ability of the model can be improved through the diversity of dataset, which has the potential to surpass human experts for complex structures. Convolutional neural network has certain practical value in the field of kinematic analysis of structural mechanics. Using visualization technology, we reveal how convolutional neural network learns and recognizes structural features. Using pre-trained VGG16 model for feature extraction and fine-tuning, we found that the generalization ability is inferior to the self-built model.
- Abstract(参考訳): 畳み込みニューラルネットワークを用いた平面バー構造の運動解析の試み
3dsMaxアニメーションソフトウェアとOpenCVモジュールを通じて、幾何学的に安定なシステムと幾何学的に不安定なシステムの自己構築画像データセットを作成する。
我々はTensorFlowとKerasのディープラーニングプラットフォームフレームワークに基づいて畳み込みニューラルネットワークモデルを構築し、訓練する。
モデルは、トレーニングセット、検証セット、テストセットで100%精度を達成する。
追加のテストセットの精度は93.7%であり、畳み込みニューラルネットワークが構造力学のキネマティック解析に関する関連する知識を学習し、習得できることを示している。
将来、モデルの一般化能力は、複雑な構造に対する人間の専門家を上回る可能性があるデータセットの多様性によって改善される。
畳み込みニューラルネットワークは、構造力学の運動学的解析の分野で一定の実用的価値を持っている。
可視化技術を用いて、畳み込みニューラルネットワークがどのように構造的特徴を学び、認識するかを明らかにする。
特徴抽出と微調整のために事前学習したVGG16モデルを用いて、一般化能力は自己構築モデルよりも劣っていることがわかった。
関連論文リスト
- Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
アーキテクチャとパラメータを勾配降下と同時に学習することで、プロセスを変換する新しいニューラルネットワークトレーニングフレームワークを導入する。
このアプローチの中心はマルチスケールエンコーダデコーダで、エンコーダは互いに近くにある同様の機能を持つニューラルネットワークのペアを埋め込む。
実験により、我々のフレームワークは、高性能を維持しているスパースでコンパクトなニューラルネットワークを発見できることを示した。
論文 参考訳(メタデータ) (2024-10-10T19:57:36Z) - Machine learning for structural design models of continuous beam systems via influence zones [3.284878354988896]
この研究は、逆問題の観点から連続ビームシステムのための機械学習構造設計モデルを開発する。
本研究の目的は,任意のシステムサイズを持つ連続ビームシステムの断面積要求を予測できる非定常構造設計モデルを概念化することである。
論文 参考訳(メタデータ) (2024-03-14T14:53:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
我々は PDSketch という新しいドメイン定義言語を提案する。
これにより、ユーザーはトランジションモデルで柔軟にハイレベルな構造を定義できる。
移行モデルの詳細は、トレーニング可能なニューラルネットワークによって満たされる。
論文 参考訳(メタデータ) (2023-03-09T18:54:12Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Dynamic Analysis of Nonlinear Civil Engineering Structures using
Artificial Neural Network with Adaptive Training [2.1202971527014287]
本研究では,適応学習アルゴリズムを用いて人工ニューラルネットワークを開発した。
実地運動記録に対するせん断フレームと岩体構造の時間履歴応答をネットワークで予測できる。
論文 参考訳(メタデータ) (2021-11-21T21:14:48Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
ニューラルアーキテクチャ検索を使用して、目前にあるタスクに最適なネットワークアーキテクチャを見つけます。
既存のNASアルゴリズムは、スクラッチから完全にトレーニングすることで、新しいアーキテクチャの適合性を評価する。
サンプルアーキテクチャの評価を高速化するために,エンドツーエンドのオフライン性能予測器を提案する。
論文 参考訳(メタデータ) (2021-08-04T05:44:16Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
CNNのアーキテクチャと性能の関係について検討する。
本稿では,2つのコンピュータビジョンに基づく物理問題において,その特性がネットワークの性能を予測できることを示す。
我々は機械学習モデルを用いて、トレーニング前にネットワークが一定のしきい値精度よりも優れた性能を発揮できるかどうかを予測する。
論文 参考訳(メタデータ) (2020-01-07T16:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。