Blending Distributed NeRFs with Tri-stage Robust Pose Optimization
- URL: http://arxiv.org/abs/2405.02880v1
- Date: Sun, 5 May 2024 10:27:03 GMT
- Title: Blending Distributed NeRFs with Tri-stage Robust Pose Optimization
- Authors: Baijun Ye, Caiyun Liu, Xiaoyu Ye, Yuantao Chen, Yuhai Wang, Zike Yan, Yongliang Shi, Hao Zhao, Guyue Zhou,
- Abstract summary: We present a distributed NeRF system with tri-stage pose optimization.
In this paper, we present a distributed NeRF system with tri-stage pose optimization.
- Score: 14.36438070050125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limited model capacity, leveraging distributed Neural Radiance Fields (NeRFs) for modeling extensive urban environments has become a necessity. However, current distributed NeRF registration approaches encounter aliasing artifacts, arising from discrepancies in rendering resolutions and suboptimal pose precision. These factors collectively deteriorate the fidelity of pose estimation within NeRF frameworks, resulting in occlusion artifacts during the NeRF blending stage. In this paper, we present a distributed NeRF system with tri-stage pose optimization. In the first stage, precise poses of images are achieved by bundle adjusting Mip-NeRF 360 with a coarse-to-fine strategy. In the second stage, we incorporate the inverting Mip-NeRF 360, coupled with the truncated dynamic low-pass filter, to enable the achievement of robust and precise poses, termed Frame2Model optimization. On top of this, we obtain a coarse transformation between NeRFs in different coordinate systems. In the third stage, we fine-tune the transformation between NeRFs by Model2Model pose optimization. After obtaining precise transformation parameters, we proceed to implement NeRF blending, showcasing superior performance metrics in both real-world and simulation scenarios. Codes and data will be publicly available at https://github.com/boilcy/Distributed-NeRF.
Related papers
- CT-NeRF: Incremental Optimizing Neural Radiance Field and Poses with Complex Trajectory [12.460959809597213]
We propose CT-NeRF, an incremental reconstruction optimization pipeline using only RGB images without pose and depth input.
We evaluate the performance of CT-NeRF on two real-world datasets, NeRFBuster and Free-Dataset.
arXiv Detail & Related papers (2024-04-22T06:07:06Z) - DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF [50.458896463542494]
DiSR-NeRF is a diffusion-guided framework for view-consistent super-resolution (SR) NeRF.
We propose Iterative 3D Synchronization (I3DS) to mitigate the inconsistency problem via the inherent multi-view consistency property of NeRF.
arXiv Detail & Related papers (2024-04-01T03:06:23Z) - Improving Robustness for Joint Optimization of Camera Poses and
Decomposed Low-Rank Tensorial Radiance Fields [26.4340697184666]
We propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor.
We also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask.
arXiv Detail & Related papers (2024-02-20T18:59:02Z) - GD^2-NeRF: Generative Detail Compensation via GAN and Diffusion for One-shot Generalizable Neural Radiance Fields [41.63632669921749]
We propose a Generative Detail compensation framework via GAN and Diffusion.
The framework is both inference-time finetuning-free and with vivid plausible details.
Experiments on both the synthetic and real-world datasets show that GD$2$-NeRF noticeably improves the details while without per-scene finetuning.
arXiv Detail & Related papers (2024-01-01T00:08:39Z) - LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs [56.050550636941836]
A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses.
We propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural fields with relaxed assumptions on pose configuration.
We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior.
arXiv Detail & Related papers (2023-06-08T17:56:22Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z) - VMRF: View Matching Neural Radiance Fields [57.93631771072756]
VMRF is an innovative view matching NeRF that enables effective NeRF training without requiring prior knowledge in camera poses or camera pose distributions.
VMRF introduces a view matching scheme, which exploits unbalanced optimal transport to produce a feature transport plan for mapping a rendered image with randomly camera pose to the corresponding real image.
With the feature transport plan as the guidance, a novel pose calibration technique is designed which rectifies the initially randomized camera poses by predicting relative pose between the pair of rendered and real images.
arXiv Detail & Related papers (2022-07-06T12:26:40Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.