A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
- URL: http://arxiv.org/abs/2405.02925v1
- Date: Sun, 5 May 2024 13:09:55 GMT
- Title: A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
- Authors: Guanhua Chen, Yutong Yao, Derek F. Wong, Lidia S. Chao,
- Abstract summary: Multi-intent natural language understanding (NLU) presents a formidable challenge due to the model confusion arising from multiple intents within a single utterance.
Previous works train the model contrastively to increase the margin between different multi-intent labels.
We introduce a two-stage Prediction-Aware Contrastive Learning framework for multi-intent NLU.
- Score: 41.45522079026888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-intent natural language understanding (NLU) presents a formidable challenge due to the model confusion arising from multiple intents within a single utterance. While previous works train the model contrastively to increase the margin between different multi-intent labels, they are less suited to the nuances of multi-intent NLU. They ignore the rich information between the shared intents, which is beneficial to constructing a better embedding space, especially in low-data scenarios. We introduce a two-stage Prediction-Aware Contrastive Learning (PACL) framework for multi-intent NLU to harness this valuable knowledge. Our approach capitalizes on shared intent information by integrating word-level pre-training and prediction-aware contrastive fine-tuning. We construct a pre-training dataset using a word-level data augmentation strategy. Subsequently, our framework dynamically assigns roles to instances during contrastive fine-tuning while introducing a prediction-aware contrastive loss to maximize the impact of contrastive learning. We present experimental results and empirical analysis conducted on three widely used datasets, demonstrating that our method surpasses the performance of three prominent baselines on both low-data and full-data scenarios.
Related papers
- C$^{2}$INet: Realizing Incremental Trajectory Prediction with Prior-Aware Continual Causal Intervention [10.189508227447401]
Trajectory prediction for multi-agents in complex scenarios is crucial for applications like autonomous driving.
Existing methods often overlook environmental biases, which leads to poor generalization.
We propose the Continual Causal Intervention (C$2$INet) method for generalizable multi-agent trajectory prediction.
arXiv Detail & Related papers (2024-11-19T08:01:20Z) - Towards Spoken Language Understanding via Multi-level Multi-grained Contrastive Learning [50.1035273069458]
Spoken language understanding (SLU) is a core task in task-oriented dialogue systems.
We propose a multi-level MMCL framework to apply contrastive learning at three levels, including utterance level, slot level, and word level.
Our framework achieves new state-of-the-art results on two public multi-intent SLU datasets.
arXiv Detail & Related papers (2024-05-31T14:34:23Z) - TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction [7.3292387742640415]
We propose to incorporate richer training dynamics information into a prototypical contrastive learning framework.
We conduct empirical evaluations of our approach using two large-scale naturalistic datasets.
arXiv Detail & Related papers (2024-04-18T23:12:46Z) - Separating common from salient patterns with Contrastive Representation
Learning [2.250968907999846]
Contrastive Analysis aims at separating common factors of variation between two datasets.
Current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations.
We propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis.
arXiv Detail & Related papers (2024-02-19T08:17:13Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
We propose a novel model termed Co-guiding Net, which implements a two-stage framework achieving the mutual guidances between the two tasks.
For the first stage, we propose single-task supervised contrastive learning, and for the second stage, we propose co-guiding supervised contrastive learning.
Experiment results on multi-intent SLU show that our model outperforms existing models by a large margin.
arXiv Detail & Related papers (2023-11-22T08:06:22Z) - Hybrid Contrastive Constraints for Multi-Scenario Ad Ranking [38.666592866591344]
Multi-scenario ad ranking aims at leveraging the data from multiple domains or channels for training a unified ranking model.
We propose a Hybrid Contrastive Constrained approach (HC2) for multi-scenario ad ranking.
arXiv Detail & Related papers (2023-02-06T09:15:39Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
Natural Language Inference (NLI) is a growingly essential task in natural language understanding.
Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference.
arXiv Detail & Related papers (2022-05-31T05:54:18Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.