論文の概要: Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling
- arxiv url: http://arxiv.org/abs/2405.02941v1
- Date: Sun, 5 May 2024 14:05:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 17:40:45.773755
- Title: Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling
- Title(参考訳): 実効性エクストリーム再スケーリングのための境界対応非結合流網
- Authors: Jinmin Li, Tao Dai, Jingyun Zhang, Kang Liu, Jun Wang, Shaoming Wang, Shu-Tao Xia, rizen guo,
- Abstract要約: Invertible rescaling Network (IRN) やgenerative adversarial Network (GAN) などを含む最近の生成手法は、画像再スケーリングにおいて例外的な性能を示した。
しかし、IRNベースの手法は過度に滑らかな結果を生成する傾向にあり、一方、GANベースの手法は偽の細部を容易に生成する。
本稿では,現実的かつ視覚的に満足な結果を生成するために,境界対応デカップリングフローネットワーク(BDFlow)を提案する。
- 参考スコア(独自算出の注目度): 49.215957313126324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling. However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details, which thus hinders their real applications. To address this issue, we propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results. Unlike previous methods that model high-frequency information as standard Gaussian distribution directly, our BDFlow first decouples the high-frequency information into \textit{semantic high-frequency} that adheres to a Boundary distribution and \textit{non-semantic high-frequency} counterpart that adheres to a Gaussian distribution. Specifically, to capture semantic high-frequency parts accurately, we use Boundary-aware Mask (BAM) to constrain the model to produce rich textures, while non-semantic high-frequency part is randomly sampled from a Gaussian distribution.Comprehensive experiments demonstrate that our BDFlow significantly outperforms other state-of-the-art methods while maintaining lower complexity. Notably, our BDFlow improves the PSNR by $4.4$ dB and the SSIM by $0.1$ on average over GRAIN, utilizing only 74\% of the parameters and 20\% of the computation. The code will be available at https://github.com/THU-Kingmin/BAFlow.
- Abstract(参考訳): Invertible rescaling Network (IRN) やgenerative adversarial Network (GAN) など,最近開発された生成手法は,画像再スケーリングにおいて例外的な性能を示した。
しかし、IRNベースの手法はオーバースムースな結果を生成する傾向があり、一方、GANベースの手法はフェイクの詳細を簡単に生成し、実際のアプリケーションを妨げる。
この問題に対処するため,現実的で視覚的に満足な結果を生成するために,境界対応デカップリングフローネットワーク(BDFlow)を提案する。
標準ガウス分布として高周波情報をモデル化する従来の手法とは異なり、我々のBDFlowはまず、その高周波情報を境界分布に従属する \textit{semantic high- frequency} とガウス分布に従属する \textit{non-semantic high- frequency} に分解する。
具体的には、意味的な高周波部分を正確に捉えるために、境界認識マスク(BAM)を用いて、モデルを制約してリッチテクスチャを生成する一方、非意味的な高周波部分はガウス分布からランダムにサンプリングされる。
特に、我々のBDFlowはPSNRを4.4ドルdB、SSIMを平均0.1ドル改善し、パラメータの74\%と計算の20\%しか利用していない。
コードはhttps://github.com/THU-Kingmin/BAFlow.comから入手できる。
関連論文リスト
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
ランダムな平滑化は、敵の摂動に対する堅牢性を証明する理論的保証を提供する。
拡散モデルは、ノイズ摂動サンプルを浄化するためにランダムな平滑化に成功している。
我々は,画素空間における拡散軌跡に沿った生成的モデリングタスクを,潜在空間における識別的タスクとして再構成する。
論文 参考訳(メタデータ) (2025-01-22T18:52:06Z) - Normalizing Flows are Capable Generative Models [48.31226028595099]
TarFlowはシンプルでスケーラブルなアーキテクチャで、高性能なNFモデルを実現する。
エンドツーエンドのトレーニングは簡単で、ピクセルを直接モデリングして生成することができる。
TarFlowは、画像の確率推定に新たな最先端結果を設定し、以前のベストメソッドを大きなマージンで上回る。
論文 参考訳(メタデータ) (2024-12-09T09:28:06Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTSは、確率空間における直線輸送を伴う整流フローを利用するODEベースのモデルである。
非条件設定では、FlowTSは最先端のパフォーマンスを達成し、コンテキストFIDスコアはStockとETThデータセットで0.019と0.011である。
条件設定では、太陽予測において優れた性能を達成している。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
本稿では,適応型ガウスPSFを用いて点を問合せできる新しい設計手法を提案する。
理論的に保証されたアンチエイリアスにより、任意のスケールの単一画像の超解像のための新しい手法が確立される。
論文 参考訳(メタデータ) (2023-11-29T14:01:28Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Comparative Study of Coupling and Autoregressive Flows through Robust
Statistical Tests [0.0]
本稿では,アフィン型と有理2次型の両方において,カップリングと自己回帰流の詳細な比較を提案する。
本研究は,4~400の次元を増大させるマルチモーダルターゲット分布の集合に着目した。
以上の結果から,A-RQSアルゴリズムは精度とトレーニング速度の両面で際立っていることが示唆された。
論文 参考訳(メタデータ) (2023-02-23T13:34:01Z) - DeFlow: Learning Complex Image Degradations from Unpaired Data with
Conditional Flows [145.83812019515818]
本論文では,不対データから画像劣化を学習するDeFlowを提案する。
共有フローデコーダネットワークの潜在空間における劣化過程をモデル化する。
共同画像復元と超解像におけるDeFlowの定式化を検証した。
論文 参考訳(メタデータ) (2021-01-14T18:58:01Z) - Deep Residual Flow for Out of Distribution Detection [27.218308616245164]
本稿では,正規化フローに基づく表現密度モデルを活用することにより,最先端技術を改善する新しい手法を提案する。
本稿では,ResNet および DenseNet アーキテクチャにおける提案手法の有効性について述べる。
論文 参考訳(メタデータ) (2020-01-15T16:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。