論文の概要: Robust Representation Consistency Model via Contrastive Denoising
- arxiv url: http://arxiv.org/abs/2501.13094v1
- Date: Wed, 22 Jan 2025 18:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 18:44:14.112624
- Title: Robust Representation Consistency Model via Contrastive Denoising
- Title(参考訳): コントラストデノイングによるロバスト表現一貫性モデル
- Authors: Jiachen Lei, Julius Berner, Jiongxiao Wang, Zhongzhu Chen, Zhongjia Ba, Kui Ren, Jun Zhu, Anima Anandkumar,
- Abstract要約: ランダムな平滑化は、敵の摂動に対する堅牢性を証明する理論的保証を提供する。
拡散モデルは、ノイズ摂動サンプルを浄化するためにランダムな平滑化に成功している。
我々は,画素空間における拡散軌跡に沿った生成的モデリングタスクを,潜在空間における識別的タスクとして再構成する。
- 参考スコア(独自算出の注目度): 83.47584074390842
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
- Abstract(参考訳): 深いニューラルネットワーク、特にセキュリティに敏感なアプリケーションにおいて、ロバスト性は不可欠である。
この目的のために、ランダム化された平滑化は、敵の摂動に対する堅牢性を証明する理論的保証を提供する。
近年, 拡散モデルは, 標準分類器を用いて予測を行う前に, ノイズ摂動サンプルを浄化するために, ランダム化平滑化に成功している。
これらの手法は小さな摂動半径で優れるが、より大きな摂動に悩まされ、古典的な手法に比べて推論中にかなりの計算オーバーヘッドが生じる。
そこで本研究では,画素空間における拡散軌跡に沿った生成的モデリングタスクを,潜在空間における識別的タスクとして再構成する。
具体的には、時間的隣接点を整列させて、軌道に沿った一貫した表現を実現するために、インスタンス判別を用いる。
学習した表現に基づいて微調整を行った結果,1つの予測によって暗黙的な音素分類が可能となり,推論コストを大幅に削減する。
各種データセットに対する広範な実験を行い、推論中に最小限の計算予算で最先端の性能を達成する。
例えば、この手法は、すべての摂動半径における画像ネット上の拡散に基づく手法の精度を平均5.3%向上させ、最大で11.6%、推論コストを平均85$\times$に下げる。
コードは、https://github.com/jiachenlei/rRCM.comで入手できる。
関連論文リスト
- Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification [75.09791002021947]
既存の浄化法は,前向き拡散過程を通じて一定のノイズを発生させ,その後に逆の処理を行い,クリーンな例を回復させることによって,対向的摂動を妨害することを目的としている。
この方法は、前処理の均一な操作が、対向的摂動と闘いながら通常のピクセルを損なうため、根本的な欠陥がある。
ニューラルネットワークの解釈可能性に基づく異種浄化戦略を提案する。
本手法は,被写体モデルが注目する特定の画素に対して高強度雑音を決定的に印加する一方,残りの画素は低強度雑音のみを被写体とする。
論文 参考訳(メタデータ) (2025-03-03T11:00:25Z) - VIPaint: Image Inpainting with Pre-Trained Diffusion Models via Variational Inference [5.852077003870417]
我々のVIPaint法は,提案手法の妥当性と多様性の両方において,従来の手法よりも優れていることを示す。
我々のVIPaint法は,提案手法の妥当性と多様性の両方において,従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-28T05:35:36Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
任意の制約下で高速かつ高品質な生成を可能にするアルゴリズムを提案する。
推測中、ノイズの多い画像上で計算された勾配更新と、最終的なクリーンな画像で計算されたアップデートとを交換できる。
我々のアプローチは、最先端のトレーニングフリー推論アプローチに匹敵するか、超越した結果をもたらす。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
ランダムな平滑化は、大規模モデルに敵対的ロバスト性を提供する、いくつかの具体的なアプローチの1つになっている。
本報告では, 分割平滑化におけるロバスト性と精度との現在のトレードオフに対処するスケーラブルな手法を提案する。
提案手法と拡散微細調整を併用したマルチスケール平滑化手法により,高騒音レベルで高い信頼性のロバスト性が得られることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:11:21Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
ディープニューラルネットワークの現実的な応用は、ノイズの多い入力や敵攻撃に直面した場合、その不安定な予測によって妨げられる。
入力にノイズ注入を頼りに、認証された半径を持つ効率的な分類器を設計する方法を示す。
新たな認証手法により、ランダムな平滑化による事前学習モデルの使用が可能となり、ゼロショット方式で現在の認証半径を効果的に改善できる。
論文 参考訳(メタデータ) (2023-09-28T22:41:47Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - (Certified!!) Adversarial Robustness for Free! [116.6052628829344]
逆方向の摂動が0.5の2ノルム以内であることに制約された場合,ImageNetでは71%の精度が証明された。
これらの結果は,モデルパラメータの微調整や再学習を必要とせず,事前学習した拡散モデルと画像分類器のみを用いて得られる。
論文 参考訳(メタデータ) (2022-06-21T17:27:27Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
本稿では,トレーニングラベルの比率が低下した分類タスクにおいて,過パラメータ化深層ネットワークの堅牢なトレーニングを行うための原則的手法を提案する。
ラベルノイズはクリーンデータから学んだネットワークと疎結合なので、ノイズをモデル化してデータから分離することを学びます。
注目すべきは、このような単純な手法を用いて訓練を行う場合、様々な実データに対してラベルノイズに対する最先端のテスト精度を示すことである。
論文 参考訳(メタデータ) (2022-02-28T18:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。