論文の概要: Preventive Audits for Data Applications Before Data Sharing in the Power IoT
- arxiv url: http://arxiv.org/abs/2405.02963v1
- Date: Sun, 5 May 2024 15:07:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 17:30:59.351942
- Title: Preventive Audits for Data Applications Before Data Sharing in the Power IoT
- Title(参考訳): Power IoTにおけるデータ共有前のデータアプリケーションに対する予防監査
- Authors: Bohong Wang, Qinglai Guo, Yanxi Lin, Yang Yu,
- Abstract要約: データ所有者は、データ共有の前にデータアプリケーションの予防監査を行う必要がある。
IoTのパワーにおけるデータ共有は、背景と見なされる。
予防監査は、データ共有前後のデータ特徴パラメータの変更に基づいて実施されるべきである。
- 参考スコア(独自算出の注目度): 4.899053698192078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase in data volume, more types of data are being used and shared, especially in the power Internet of Things (IoT). However, the processes of data sharing may lead to unexpected information leakage because of the ubiquitous relevance among the different data, thus it is necessary for data owners to conduct preventive audits for data applications before data sharing to avoid the risk of key information leakage. Considering that the same data may play completely different roles in different application scenarios, data owners should know the expected data applications of the data buyers in advance and provide modified data that are less relevant to the private information of the data owners and more relevant to the nonprivate information that the data buyers need. In this paper, data sharing in the power IoT is regarded as the background, and the mutual information of the data and their implicit information is selected as the data feature parameter to indicate the relevance between the data and their implicit information or the ability to infer the implicit information from the data. Therefore, preventive audits should be conducted based on changes in the data feature parameters before and after data sharing. The probability exchange adjustment method is proposed as the theoretical basis of preventive audits under simplified consumption, and the corresponding optimization models are constructed and extended to more practical scenarios with multivariate characteristics. Finally, case studies are used to validate the effectiveness of the proposed preventive audits.
- Abstract(参考訳): データボリュームの増加に伴い、特にIoT(Internet of Things)のパワーにおいて、より多くのタイプのデータが使用され、共有されている。
しかし、データ共有のプロセスは、異なるデータ間のユビキタスな関連性のため、予期せぬ情報漏洩につながる可能性があるため、データ所有者は、重要な情報漏洩のリスクを避けるために、データ共有の前にデータアプリケーションに対する予防監査を行う必要がある。
異なるアプリケーションシナリオにおいて、同じデータが完全に異なる役割を担う可能性があることを考慮すれば、データ所有者は、事前にデータ購入者の期待するデータアプリケーションを理解し、データ所有者のプライベート情報と関係がなく、データ購入者が必要とする非プライベート情報と関係のない修正データを提供する必要がある。
本稿では、電力IoTにおけるデータ共有を背景として、データとその暗黙情報の相互情報をデータ特徴パラメータとして選択し、データとその暗示情報との関係や、データから暗示情報を推測する能力を示す。
したがって、データ共有前後のデータ特徴パラメータの変化に基づいて予防監査を行う必要がある。
簡易消費下における予防監査の理論的基礎として確率交換調整法を提案し,それに対応する最適化モデルを構築し,多変量特性を持つより実用的なシナリオに拡張した。
最後に、ケーススタディを用いて、提案した予防監査の有効性を検証する。
関連論文リスト
- A Survey on Data Markets [73.07800441775814]
より大きな福祉のためのトレーディングデータの増加は、データ市場の台頭につながっている。
データ市場とは、データセットやデータデリバティブを含むデータプロダクトの交換が行われるメカニズムである。
これは、価格やデータの分散など、いくつかの機能が相互作用するコーディネートメカニズムとして機能する。
論文 参考訳(メタデータ) (2024-11-09T15:09:24Z) - Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace [56.78396861508909]
PriArTaは、買い手の既存のデータセットと売り手のデータセットの分布の間の距離を計算するアプローチである。
PriArTaは通信効率が良く、買い手は各売り手からデータセット全体にアクセスすることなくデータセットを評価することができる。
論文 参考訳(メタデータ) (2024-11-01T17:13:14Z) - Data Distribution Valuation [56.71023681599737]
既存のデータバリュエーションメソッドは、離散データセットの値を定義します。
多くのユースケースでは、ユーザはデータセットの値だけでなく、データセットがサンプリングされた分布の値にも興味を持っています。
本稿では,理論的原理と実行可能なポリシを実現するための,MMDに基づく評価手法を提案する。
論文 参考訳(メタデータ) (2024-10-06T07:56:53Z) - DAVED: Data Acquisition via Experimental Design for Data Markets [25.300193837833426]
本稿では,線形実験設計にインスパイアされたデータ取得問題に対するフェデレートされたアプローチを提案する。
提案手法はラベル付き検証データを必要とせずに予測誤差を低くする。
我々の研究の重要な洞察は、テストセット予測のためのデータ取得の利点を直接見積もる手法が、特に分散市場設定と互換性があることである。
論文 参考訳(メタデータ) (2024-03-20T18:05:52Z) - Privacy-Aware Data Acquisition under Data Similarity in Regression Markets [29.64195175524365]
データの類似性とプライバシの嗜好が市場設計に不可欠であることを示す。
我々は、データ類似性が市場参加や取引データの価値にどのように影響するかを数値的に評価する。
論文 参考訳(メタデータ) (2023-12-05T09:39:04Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
収集したデータの削除は、データのプライバシを保証するのに不十分であることが多い。
UnlearnSPNは、訓練された総生産ネットワークから単一データポイントの影響を取り除くアルゴリズムである。
論文 参考訳(メタデータ) (2022-10-04T08:22:37Z) - Fundamentals of Task-Agnostic Data Valuation [21.78555506720078]
データ検索/購入者のためのデータ所有者/販売者のデータ評価について検討する。
検証の必要なく、タスクに依存しないデータ評価に重点を置いています。
論文 参考訳(メタデータ) (2022-08-25T22:07:07Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
原データの特定の統計特性を反映した合成データを使用することで、原データのプライバシーが保護される。
以前の作業では、正式なプライバシ保証を提供するために、差分プライベートなデータリリースメカニズムを使用していました。
トレーニングプロセスに因果情報を導入し、上記のトレードオフを好意的に修正することを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:46:57Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。