論文の概要: High Order Reasoning for Time Critical Recommendation in Evidence-based Medicine
- arxiv url: http://arxiv.org/abs/2405.03010v1
- Date: Sun, 5 May 2024 17:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:24:13.357173
- Title: High Order Reasoning for Time Critical Recommendation in Evidence-based Medicine
- Title(参考訳): Evidence-based Medicine における時間的批判的勧告のための高次推論
- Authors: Manjiang Yu, Xue Li,
- Abstract要約: 本稿では,エビデンスベースの医療に推奨する高次推論のモデルを提案する。
実験では、Large Language Model (LLM) が "What-if" シナリオで最適な性能を示した。
LLMはICUからの退院後の患者の生活状態を70%の精度で予測することができた。
- 参考スコア(独自算出の注目度): 3.9499087751190243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In time-critical decisions, human decision-makers can interact with AI-enabled situation-aware software to evaluate many imminent and possible scenarios, retrieve billions of facts, and estimate different outcomes based on trillions of parameters in a fraction of a second. In high-order reasoning, "what-if" questions can be used to challenge the assumptions or pre-conditions of the reasoning, "why-not" questions can be used to challenge on the method applied in the reasoning, "so-what" questions can be used to challenge the purpose of the decision, and "how-about" questions can be used to challenge the applicability of the method. When above high-order reasoning questions are applied to assist human decision-making, it can help humans to make time-critical decisions and avoid false-negative or false-positive types of errors. In this paper, we present a model of high-order reasoning to offer recommendations in evidence-based medicine in a time-critical fashion for the applications in ICU. The Large Language Model (LLM) is used in our system. The experiments demonstrated the LLM exhibited optimal performance in the "What-if" scenario, achieving a similarity of 88.52% with the treatment plans of human doctors. In the "Why-not" scenario, the best-performing model tended to opt for alternative treatment plans in 70% of cases for patients who died after being discharged from the ICU. In the "So-what" scenario, the optimal model provided a detailed analysis of the motivation and significance of treatment plans for ICU patients, with its reasoning achieving a similarity of 55.6% with actual diagnostic information. In the "How-about" scenario, the top-performing LLM demonstrated a content similarity of 66.5% in designing treatment plans transferring for similar diseases. Meanwhile, LLMs managed to predict the life status of patients after their discharge from the ICU with an accuracy of 70%.
- Abstract(参考訳): タイムクリティカルな決定では、人間の意思決定者はAI対応の状況認識ソフトウェアと対話して、多くの緊急かつ可能なシナリオを評価し、数十億の事実を検索し、数兆のパラメータに基づいて1秒で異なる結果を見積もることができる。
高次推論では、推論の前提や前提条件に挑戦するために「What-if」質問、推論に適用される方法に挑戦するために「Why-not」質問、決定の目的に挑戦するために「so-what」質問、メソッドの適用性に挑戦するために「how-about」質問を用いることができる。
上記の高次の推論質問が人間の意思決定を支援するために適用されると、人間は時間的決定を行い、偽陰性または偽陽性のタイプのエラーを避けるのに役立つ。
本稿では,ICUの応用に向けて,エビデンスベースの医療における推奨事項を時限的に提示する高次推論モデルを提案する。
このシステムでは,Large Language Model (LLM) が使用されている。
実験では、LSMは「What-if」シナリオで最適な性能を示し、人間の医師の治療計画と88.52%の類似性を達成した。
この「Why-not」のシナリオでは、ICUから退院後に死亡した患者の70%に代替治療計画を選択する傾向があった。
So-What」のシナリオでは、最適モデルはICU患者に対する治療計画の動機と意義を詳細に分析し、実際の診断情報と55.6%の類似性を達成した。
How-about" のシナリオでは、LLM の最高性能は66.5%のコンテント類似性を示し、同様の疾患に移行する治療計画を設計した。
一方,ILMはICUからの退院後の患者の生活状態を70%の精度で予測することができた。
関連論文リスト
- Language Models And A Second Opinion Use Case: The Pocket Professional [0.0]
本研究は、専門的な意思決定において、正式な第二意見ツールとして、LLM(Large Language Models)の役割を検証する。
この研究は、20ヶ月にわたるMedscapeからの183の挑戦的な医療事例を分析し、クラウドソースされた医師の反応に対して複数のLSMのパフォーマンスをテストした。
論文 参考訳(メタデータ) (2024-10-27T23:48:47Z) - MedThink: Explaining Medical Visual Question Answering via Multimodal Decision-Making Rationale [19.94415334436024]
我々は、データ準備を効率化し、新しいベンチマークMedVQAデータセットを構築するための半自動アノテーションプロセスを開発した。
これらのデータセットは、マルチモーダルな大言語モデルと人間のアノテーションによって生成される中間的な医学的意思決定の合理性を提供する。
我々はまた、医学的意思決定の合理性を取り入れた軽量な事前学習生成モデルを微調整する新しいフレームワーク、MedThinkを設計する。
論文 参考訳(メタデータ) (2024-04-18T17:53:19Z) - Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) は、大きな言語モデルを拡張するアルゴリズムであり、効果的な質問をすることで積極的に情報を求めることができる。
医療診断、トラブルシューティング、および20の質問ゲームに関する実験において、UoTは、タスク完了の成功率において平均38.1%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-02-05T18:28:44Z) - Explainable Machine Learning for ICU Readmission Prediction [0.10071153797668914]
集中治療ユニット(ICU)は、複雑な病院環境を含む。
この環境における不確かで競合し、計画されていない側面は、ケアパスを均一に実施することの難しさを増大させる。
いくつかのユーティリティーは患者の医療情報を通じて寛解を予測しようと試みている。
この研究は、多中心データベース上で患者の寛容をモデル化するための標準化された、説明可能な機械学習パイプラインを提案する。
論文 参考訳(メタデータ) (2023-09-25T00:16:43Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Machine learning-based patient selection in an emergency department [0.0]
本稿では機械学習(ML)に基づく患者選択手法の可能性について検討する。
システムの包括的な状態表現と、複雑な非線形選択関数が組み込まれている。
その結果,提案手法は評価条件の大部分においてAPQ法よりも有意に優れていた。
論文 参考訳(メタデータ) (2022-06-08T08:56:52Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。