論文の概要: A View on Out-of-Distribution Identification from a Statistical Testing Theory Perspective
- arxiv url: http://arxiv.org/abs/2405.03052v1
- Date: Sun, 5 May 2024 21:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:24:13.329349
- Title: A View on Out-of-Distribution Identification from a Statistical Testing Theory Perspective
- Title(参考訳): 統計的テスト理論から見た分布外同定の一考察
- Authors: Alberto Caron, Chris Hicks, Vasilios Mavroudis,
- Abstract要約: 本研究では,教師なしおよび教師なしの学習コンテキストにおいて,テスト時間におけるOODサンプルを効率的に検出する問題について検討する。
我々は,OOD問題を統計的検定のレンズで再定式化し,OOD問題を統計的に特定可能な条件について議論する。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of efficiently detecting Out-of-Distribution (OOD) samples at test time in supervised and unsupervised learning contexts. While ML models are typically trained under the assumption that training and test data stem from the same distribution, this is often not the case in realistic settings, thus reliably detecting distribution shifts is crucial at deployment. We re-formulate the OOD problem under the lenses of statistical testing and then discuss conditions that render the OOD problem identifiable in statistical terms. Building on this framework, we study convergence guarantees of an OOD test based on the Wasserstein distance, and provide a simple empirical evaluation.
- Abstract(参考訳): 本研究では,教師なしおよび教師なしの学習文脈において,テスト時間におけるOODサンプルを効率的に検出する問題について検討する。
MLモデルは通常、トレーニングとテストデータが同じ分散に由来するという前提でトレーニングされるが、現実的な設定ではそうではないことが多いため、デプロイメントにおいて確実に分散シフトを検出することが不可欠である。
我々は,OOD問題を統計的検定のレンズで再定式化し,OOD問題を統計的に特定可能な条件について議論する。
この枠組みに基づいて、ワッサーシュタイン距離に基づくOOD試験の収束保証について検討し、簡単な経験的評価を行う。
関連論文リスト
- Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
アーキテクチャ設計におけるバイアスを緩和し,不均衡なOOD検出器を増強する訓練時間正規化手法を提案する。
提案手法は,CIFAR10-LT,CIFAR100-LT,ImageNet-LTのベンチマークに対して一貫した改良を行う。
論文 参考訳(メタデータ) (2024-07-23T12:28:59Z) - Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport [20.421338676377587]
トレーニングサンプルとテストインプットの両方から幾何情報を含む経験的確率分布は,OOD検出に極めて有用である。
最適輸送の枠組みの中では,OODサンプルであるテスト入力の不確かさを定量化するため,エントロピー(enmphconditional distribution entropy)と呼ばれる新しいスコア関数を提案する。
論文 参考訳(メタデータ) (2024-01-22T07:07:32Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
標準ネットワークがトレーニングされるIDデータから逸脱するテストサンプルを特定するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,IDデータのトレーニングが可能であるか否かを問う,先駆的な学習フレームワークであるOODナレッジ蒸留について紹介する。
論文 参考訳(メタデータ) (2023-11-14T08:05:02Z) - Plugin estimators for selective classification with out-of-distribution
detection [67.28226919253214]
現実世界の分類器は、信頼性の低いサンプルの予測を控えることの恩恵を受けることができる。
これらの設定は、選択分類(SC)とアウト・オブ・ディストリビューション(OOD)の検出文献において広範囲に研究されている。
OOD検出による選択分類に関する最近の研究は、これらの問題の統一的な研究を議論している。
本稿では,既存の手法を理論的に基礎づけ,有効かつ一般化したSCOD用プラグイン推定器を提案する。
論文 参考訳(メタデータ) (2023-01-29T07:45:17Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Multiple Testing Framework for Out-of-Distribution Detection [27.248375922343616]
本研究では,学習アルゴリズムの出力を推定時に信頼できるかどうかを検知するOOD(Out-of-Distribution)検出の問題について検討する。
我々は,OOD検出のための強力なテスト構築のための洞察を提供する,入力分布と学習アルゴリズムの両方を含むOOD概念の定義を提案する。
論文 参考訳(メタデータ) (2022-06-20T00:56:01Z) - Understanding and Testing Generalization of Deep Networks on
Out-of-Distribution Data [30.471871571256198]
ディープネットワークモデルは、In-Distributionデータでは優れた性能を発揮するが、Out-Of-Distributionデータでは著しく失敗する可能性がある。
本研究は,実験的なIDテストの問題を分析し,OODテストパラダイムを設計することを目的とする。
論文 参考訳(メタデータ) (2021-11-17T15:29:07Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
本稿では,Deep Neural Networks の Out Of Distribution (OOD) 検出問題を統計的仮説テスト問題として考察する。
このフレームワークに基づいて、低階統計に基づいた新しいOOD手順を提案します。
本手法は,ネットワークパラメータの再トレーニングを行わずに,oodベンチマークの精度が向上した。
論文 参考訳(メタデータ) (2021-02-25T16:14:47Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。