Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy
- URL: http://arxiv.org/abs/2405.03065v1
- Date: Sun, 5 May 2024 22:18:22 GMT
- Title: Powering the Future of IoT: Federated Learning for Optimized Power Consumption and Enhanced Privacy
- Authors: Ghazaleh Shirvani, Saeid Ghasemshirazi,
- Abstract summary: Federated Learning emerges as a promising paradigm to address the inherent challenges of power consumption and data privacy in IoT environments.
This paper explores the transformative potential of FL in enhancing the longevity of IoT devices by mitigating power consumption and enhancing privacy and security measures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread use of the Internet of Things has led to the development of large amounts of perception data, making it necessary to develop effective and scalable data analysis tools. Federated Learning emerges as a promising paradigm to address the inherent challenges of power consumption and data privacy in IoT environments. This paper explores the transformative potential of FL in enhancing the longevity of IoT devices by mitigating power consumption and enhancing privacy and security measures. We delve into the intricacies of FL, elucidating its components and applications within IoT ecosystems. Additionally, we discuss the critical characteristics and challenges of IoT, highlighting the need for such machine learning solutions in processing perception data. While FL introduces many benefits for IoT sustainability, it also has limitations. Through a comprehensive discussion and analysis, this paper elucidates the opportunities and constraints of FL in shaping the future of sustainable and secure IoT systems. Our findings highlight the importance of developing new approaches and conducting additional research to maximise the benefits of FL in creating a secure and privacy-focused IoT environment.
Related papers
- Towards Sustainable IoT: Challenges, Solutions, and Future Directions for Device Longevity [0.0]
This study explores the various complex difficulties which contributed to the early decommissioning of IoT devices.
By examining factors such as security vulnerabilities, user awareness gaps, and the influence of fashion-driven technology trends, the paper underscores the need for legislative interventions.
arXiv Detail & Related papers (2024-05-26T04:05:01Z) - Harnessing Federated Generative Learning for Green and Sustainable Internet of Things [9.699977999019977]
One-shot Federated Learning (OSFL) is an innovative paradigm that harmonizes sustainability and machine learning within IoT ecosystems.
OSFL revolutionizes the traditional Federated Learning (FL) workflow by condensing multiple iterative communication rounds into a single operation.
Our research underscores the transformative potential of OSFL, poised to reshape the landscape of IoT applications across domains such as energy-efficient smart cities and groundbreaking healthcare solutions.
arXiv Detail & Related papers (2024-04-30T17:15:26Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Federated Learning in IoT: a Survey from a Resource-Constrained
Perspective [0.0]
Federated Learning (FL), a decentralized machine learning technique, is widely used to collect and train machine learning models from a variety of distributed data sources.
However, the resource-constrained nature of IoT devices prevents the widescale deployment FL in the real world.
This research paper presents a comprehensive survey of the challenges and solutions associated with implementing Federated Learning (FL) in resource-constrained Internet of Things (IoT) environments.
arXiv Detail & Related papers (2023-08-25T03:31:22Z) - Over-The-Air Federated Learning: Status Quo, Open Challenges, and Future
Directions [78.5371215066019]
Over-the-air federated learning (OTA-FL) enables users at the network edge to share spectrum resources and achieves efficient and low-latency global model aggregation.
This paper provides a holistic review of progress in OTA-FL and points to potential future research directions.
arXiv Detail & Related papers (2023-07-03T12:44:52Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - A Federated Learning-enabled Smart Street Light Monitoring Application:
Benefits and Future Challenges [1.405197962967472]
Federated Learning (FL) plays a pivotal role in providing privacy-preserving and communication efficient Machine Learning frameworks.
We evaluate the feasibility of FL in the context of a Smart Cities Street Light Monitoring application.
arXiv Detail & Related papers (2022-08-27T12:26:25Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
Federated learning (FL) has been increasingly considered to preserve data training privacy from eavesdropping attacks in mobile edge computing-based Internet of Thing (EdgeIoT)
We propose a new federated learning-enabled twin-delayed deep deterministic policy gradient (FLDLT3) framework to achieve the optimal accuracy and energy balance in a continuous domain.
Numerical results demonstrate that the proposed FL-DLT3 achieves fast convergence (less than 100 iterations) while the FL accuracy-to-energy consumption ratio is improved by 51.8% compared to existing state-of-the-art benchmark.
arXiv Detail & Related papers (2022-02-15T13:36:15Z) - The Internet of Federated Things (IoFT): A Vision for the Future and
In-depth Survey of Data-driven Approaches for Federated Learning [12.754922966044687]
The Internet of Things (IoT) is on the verge of a major paradigm shift.
In the IoT system of the future, IoFT, the cloud will be substituted by the crowd where model training is brought to the edge.
This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision.
arXiv Detail & Related papers (2021-11-09T18:52:26Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.