AnoGAN for Tabular Data: A Novel Approach to Anomaly Detection
- URL: http://arxiv.org/abs/2405.03075v1
- Date: Sun, 5 May 2024 22:54:43 GMT
- Title: AnoGAN for Tabular Data: A Novel Approach to Anomaly Detection
- Authors: Aditya Singh, Pavan Reddy,
- Abstract summary: This research addresses the complexities inherent in anomaly detection, exploring challenges and adapting to sophisticated malicious activities.
Our contributions include adapting AnoGAN's principles to a new domain and promising advancements in detecting previously undetectable anomalies.
- Score: 1.5039745292757671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection, a critical facet in data analysis, involves identifying patterns that deviate from expected behavior. This research addresses the complexities inherent in anomaly detection, exploring challenges and adapting to sophisticated malicious activities. With applications spanning cybersecurity, healthcare, finance, and surveillance, anomalies often signify critical information or potential threats. Inspired by the success of Anomaly Generative Adversarial Network (AnoGAN) in image domains, our research extends its principles to tabular data. Our contributions include adapting AnoGAN's principles to a new domain and promising advancements in detecting previously undetectable anomalies. This paper delves into the multifaceted nature of anomaly detection, considering the dynamic evolution of normal behavior, context-dependent anomaly definitions, and data-related challenges like noise and imbalances.
Related papers
- Foundation Models for Anomaly Detection: Vision and Challenges [19.2255593926904]
Foundation models (FMs) have emerged as a powerful tool for advancing anomaly detection.
This survey presents the first comprehensive review of recent advancements in FM-based anomaly detection.
arXiv Detail & Related papers (2025-02-10T05:01:08Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
We present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection.
To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm.
arXiv Detail & Related papers (2023-06-27T14:10:09Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Applications of Generative Adversarial Networks in Anomaly Detection: A
Systematic Literature Review [28.752089275446462]
generative adversarial networks (GANs) have attracted a great deal of attention in anomaly detection research.
In this paper, we present a systematic literature review of the applications of GANs in anomaly detection.
arXiv Detail & Related papers (2021-10-22T21:48:48Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods.
We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges.
arXiv Detail & Related papers (2020-07-06T02:21:16Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.