Research on Image Recognition Technology Based on Multimodal Deep Learning
- URL: http://arxiv.org/abs/2405.03091v1
- Date: Mon, 6 May 2024 01:05:21 GMT
- Title: Research on Image Recognition Technology Based on Multimodal Deep Learning
- Authors: Jinyin Wang, Xingchen Li, Yixuan Jin, Yihao Zhong, Keke Zhang, Chang Zhou,
- Abstract summary: This project investigates the human multi-modal behavior identification algorithm utilizing deep neural networks.
The performance of the suggested algorithm was evaluated using the MSR3D data set.
- Score: 24.259653149898167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project investigates the human multi-modal behavior identification algorithm utilizing deep neural networks. According to the characteristics of different modal information, different deep neural networks are used to adapt to different modal video information. Through the integration of various deep neural networks, the algorithm successfully identifies behaviors across multiple modalities. In this project, multiple cameras developed by Microsoft Kinect were used to collect corresponding bone point data based on acquiring conventional images. In this way, the motion features in the image can be extracted. Ultimately, the behavioral characteristics discerned through both approaches are synthesized to facilitate the precise identification and categorization of behaviors. The performance of the suggested algorithm was evaluated using the MSR3D data set. The findings from these experiments indicate that the accuracy in recognizing behaviors remains consistently high, suggesting that the algorithm is reliable in various scenarios. Additionally, the tests demonstrate that the algorithm substantially enhances the accuracy of detecting pedestrian behaviors in video footage.
Related papers
- Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - Research on facial expression recognition based on Multimodal data
fusion and neural network [2.5431493111705943]
The algorithm is based on the multimodal data, and it takes the facial image, the histogram of oriented gradient of the image and the facial landmarks as the input.
Experimental results show that, benefiting by the complementarity of multimodal data, the algorithm has a great improvement in accuracy, robustness and detection speed.
arXiv Detail & Related papers (2021-09-26T23:45:40Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - Towards Improved Human Action Recognition Using Convolutional Neural
Networks and Multimodal Fusion of Depth and Inertial Sensor Data [1.52292571922932]
This paper attempts at improving the accuracy of Human Action Recognition (HAR) by fusion of depth and inertial sensor data.
We transform the depth data into Sequential Front view Images(SFI) and fine-tune the pre-trained AlexNet on these images.
Inertial data is converted into Signal Images (SI) and another convolutional neural network (CNN) is trained on these images.
arXiv Detail & Related papers (2020-08-22T03:41:34Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z) - 3DFCNN: Real-Time Action Recognition using 3D Deep Neural Networks with
Raw Depth Information [1.3854111346209868]
This paper describes an approach for real-time human action recognition from raw depth image-sequences, provided by an RGB-D camera.
The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes-temporal patterns from depth sequences without %any costly pre-processing.
arXiv Detail & Related papers (2020-06-13T23:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.