論文の概要: To Each (Textual Sequence) Its Own: Improving Memorized-Data Unlearning in Large Language Models
- arxiv url: http://arxiv.org/abs/2405.03097v1
- Date: Mon, 6 May 2024 01:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:04:42.807023
- Title: To Each (Textual Sequence) Its Own: Improving Memorized-Data Unlearning in Large Language Models
- Title(参考訳): 個別(手動シーケンス)へ:大規模言語モデルにおける記憶データ学習の改善
- Authors: George-Octavian Barbulescu, Peter Triantafillou,
- Abstract要約: LLMは、テキスト生成期間中に、トレーニングされたテキストシーケンスを記憶し、動詞の入力シーケンスを退避させる。
この事実は、プライバシーと関連する問題(例えば、著作権)の原因として知られている。
LLMのアンラーニングは、これらの副作用に適切に対処する新しいアルゴリズムを考案する形で行われる。
- 参考スコア(独自算出の注目度): 3.4990427823966828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLMs have been found to memorize training textual sequences and regurgitate verbatim said sequences during text generation time. This fact is known to be the cause of privacy and related (e.g., copyright) problems. Unlearning in LLMs then takes the form of devising new algorithms that will properly deal with these side-effects of memorized data, while not hurting the model's utility. We offer a fresh perspective towards this goal, namely, that each textual sequence to be forgotten should be treated differently when being unlearned based on its degree of memorization within the LLM. We contribute a new metric for measuring unlearning quality, an adversarial attack showing that SOTA algorithms lacking this perspective fail for privacy, and two new unlearning methods based on Gradient Ascent and Task Arithmetic, respectively. A comprehensive performance evaluation across an extensive suite of NLP tasks then mapped the solution space, identifying the best solutions under different scales in model capacities and forget set sizes and quantified the gains of the new approaches.
- Abstract(参考訳): LLMは、テキスト生成期間中に、トレーニングされたテキストシーケンスを記憶し、動詞の入力シーケンスを退避させる。
この事実は、プライバシーと関連する問題(著作権など)の原因として知られている。
LLMにおけるアンラーニングは、モデルの有用性を損なうことなく、記憶されたデータのこれらの副作用に適切に対処する新しいアルゴリズムを考案する形式を取る。
我々は,この目標に向けて新たな視点,すなわち,LLM内の暗記の度合いに基づいて,忘れるべき各テキストシーケンスを学習しない場合に,異なる扱いをすべきである,という新たな視点を提供する。
我々は,未学習の質を測定するための新しい指標,この視点を欠いたSOTAアルゴリズムがプライバシに失敗することを示す敵攻撃,およびグラディエント・アセントとタスク・アリストメティクスに基づく2つの新しい未学習手法を提示する。
NLPタスクの広範なスイートにまたがる総合的なパフォーマンス評価では、解空間をマッピングし、モデル能力の異なるスケールでの最良のソリューションを特定し、セットサイズを忘れ、新しいアプローチの利点を定量化した。
関連論文リスト
- Unlocking Memorization in Large Language Models with Dynamic Soft Prompting [66.54460367290146]
大規模言語モデル(LLM)は、要約、質問応答、翻訳などの自然言語処理(NLP)タスクに革命をもたらした。
LLMはトレーニングデータを記憶する傾向があるため、重大なセキュリティリスクを生じ、プライバシー侵害や著作権侵害につながる可能性がある。
動的,プレフィックスに依存したソフトプロンプトを用いたLLM記憶推定手法を提案する。
論文 参考訳(メタデータ) (2024-09-20T18:56:32Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - Do LLMs Dream of Ontologies? [15.049502693786698]
大規模言語モデル(LLM)は、最近、自動テキスト理解と生成に革命をもたらした。
本稿では,汎用的な事前学習 LLM が,どの程度の知識を持つかを検討する。
論文 参考訳(メタデータ) (2024-01-26T15:10:23Z) - Continuously Learning New Words in Automatic Speech Recognition [56.972851337263755]
本稿では,新たな単語認識のための自己教師付き連続学習手法を提案する。
過去の研究から,メモリ拡張型自動音声認識モデルを用いた。
提案手法により,新たな単語の出現頻度が高くなると,新たな単語のパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-01-09T10:39:17Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Orthogonal Subspace Learning for Language Model Continual Learning [45.35861158925975]
O-LoRAは、言語モデルにおける継続学習のためのシンプルで効率的なアプローチである。
提案手法は,パラメータの余分な追加コストのみを誘導し,再生にユーザデータストレージを必要としない。
論文 参考訳(メタデータ) (2023-10-22T02:23:44Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
我々は,タスク間の微調整中に,言語モデルの暗記を探索する最初の包括的分析を行う。
オープンソースと、さまざまなタスクにまたがる独自の微調整LMによる研究は、暗記が様々な微調整タスクの間に強い相違を示すことを示している。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
論文 参考訳(メタデータ) (2023-10-10T15:41:26Z) - Mitigating Approximate Memorization in Language Models via Dissimilarity
Learned Policy [0.0]
大規模言語モデル(LLM)は大量のデータに基づいて訓練される。
LLMは、トレーニングデータの一部を記憶し、相手が適切にプロンプトすると、それらのデータを冗長に出力することを示した。
論文 参考訳(メタデータ) (2023-05-02T15:53:28Z) - CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition [16.987008461171065]
我々は,手書き文字認識における破滅的な忘れの問題を軽減するために,連続的な自己指導型学習の可能性を探究する。
提案手法は,各タスクにアダプタと呼ばれる中間層を追加し,現在のタスクを学習しながら,前モデルからの知識を効率的に抽出する。
私たちは英語、イタリア語、ロシア語のスクリプトで最先端のパフォーマンスを達成しましたが、タスクごとにいくつかのパラメータしか追加していません。
論文 参考訳(メタデータ) (2023-03-16T14:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。