FairMonitor: A Dual-framework for Detecting Stereotypes and Biases in Large Language Models
- URL: http://arxiv.org/abs/2405.03098v1
- Date: Mon, 6 May 2024 01:23:07 GMT
- Title: FairMonitor: A Dual-framework for Detecting Stereotypes and Biases in Large Language Models
- Authors: Yanhong Bai, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xingjiao Wu, Liang He,
- Abstract summary: We propose the FairMonitor framework and adopt a static-dynamic detection method for a comprehensive evaluation of stereotypes and biases in Large Language Models (LLMs)
The static component consists of a direct inquiry test, an implicit association test, and an unknown situation test, including 10,262 open-ended questions with 9 sensitive factors and 26 educational scenarios.
We utilize the multi-agent system to construst the dynamic scenarios for detecting subtle biases in more complex and realistic setting.
- Score: 9.385390205833893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting stereotypes and biases in Large Language Models (LLMs) is crucial for enhancing fairness and reducing adverse impacts on individuals or groups when these models are applied. Traditional methods, which rely on embedding spaces or are based on probability metrics, fall short in revealing the nuanced and implicit biases present in various contexts. To address this challenge, we propose the FairMonitor framework and adopt a static-dynamic detection method for a comprehensive evaluation of stereotypes and biases in LLMs. The static component consists of a direct inquiry test, an implicit association test, and an unknown situation test, including 10,262 open-ended questions with 9 sensitive factors and 26 educational scenarios. And it is effective for evaluating both explicit and implicit biases. Moreover, we utilize the multi-agent system to construst the dynamic scenarios for detecting subtle biases in more complex and realistic setting. This component detects the biases based on the interaction behaviors of LLMs across 600 varied educational scenarios. The experimental results show that the cooperation of static and dynamic methods can detect more stereotypes and biased in LLMs.
Related papers
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
We evaluate the severity of bias toward a view by using a biased model in edge cases of excessive bias scenarios.
Our findings reveal a discrepancy in LLM performance in identifying implicit and explicit opinions, with a general tendency of bias toward explicit opinions of opposing stances.
The direct, incautious responses of the unaligned models suggest a need for further refinement of decisiveness.
arXiv Detail & Related papers (2024-08-15T15:23:00Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks.
To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets.
We propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks.
arXiv Detail & Related papers (2024-07-02T16:31:37Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
Implicit biases are significant because they influence the decisions made by Large Language Models (LLMs)
Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias.
We introduce two novel psychological-inspired methodologies to reveal and measure implicit biases through prompt-based and decision-making tasks.
arXiv Detail & Related papers (2024-07-01T13:21:33Z) - Towards detecting unanticipated bias in Large Language Models [1.4589372436314496]
Large Language Models (LLMs) have exhibited fairness issues similar to those in previous machine learning systems.
This research focuses on analyzing and quantifying these biases in training data and their impact on the decisions of these models.
arXiv Detail & Related papers (2024-04-03T11:25:20Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - FairMonitor: A Four-Stage Automatic Framework for Detecting Stereotypes
and Biases in Large Language Models [10.57405233305553]
This paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of Large Language Models (LLMs)
Using the education sector as a case study, we constructed the Edu-FairMonitor based on the four-stage framework.
Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairMonitor.
arXiv Detail & Related papers (2023-08-21T00:25:17Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Neural
Networks [7.763173131630868]
We propose two metrics to quantitatively evaluate the class-wise bias of two models in comparison to one another.
By evaluating the performance of these new metrics and by demonstrating their practical application, we show that they can be used to measure fairness as well as bias.
arXiv Detail & Related papers (2021-10-08T22:35:34Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
We argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model.
We propose LOGAN, a new bias detection technique based on clustering.
Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region.
arXiv Detail & Related papers (2020-10-06T16:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.