DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging
- URL: http://arxiv.org/abs/2405.03159v1
- Date: Mon, 6 May 2024 04:36:02 GMT
- Title: DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging
- Authors: Wenxin Fan, Jian Cheng, Cheng Li, Xinrui Ma, Jing Yang, Juan Zou, Ruoyou Wu, Zan Chen, Yuanjing Feng, Hairong Zheng, Shanshan Wang,
- Abstract summary: This paper proposes a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models.
DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details.
- Score: 15.408939800451696
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning has emerged as a promising approach for learning the nonlinear mapping between diffusion-weighted MR images and tissue parameters, which enables automatic and deep understanding of the brain microstructures. However, the efficiency and accuracy in the multi-parametric estimations are still limited since previous studies tend to estimate multi-parametric maps with dense sampling and isolated signal modeling. This paper proposes DeepMpMRI, a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models using sparsely sampled q-space data. DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details by exploiting the correlation across parameters. In addition, we introduce a Nesterov-based adaptive learning algorithm that optimizes the regularization parameter dynamically to enhance the performance. DeepMpMRI is an extendable framework capable of incorporating flexible network architecture. Experimental results demonstrate the superiority of our approach over 5 state-of-the-art methods in simultaneously estimating multi-parametric maps for various diffusion models with fine-grained details both quantitatively and qualitatively, achieving 4.5 - 22.5$\times$ acceleration compared to the dense sampling of a total of 270 diffusion gradients.
Related papers
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
We introduce and demonstrate a new paradigm for quantitative parameter mapping in MRI.
We propose a self-supervised deep variational approach that breaks the assumption of independent pixels.
Our approach can hence support the clinical adoption of parameter mapping methods such as dMRI and qMRI.
arXiv Detail & Related papers (2024-11-16T11:11:36Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties.
Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images.
We present qMRI diffuser, a novel approach to qMRI utilising deep generative models.
arXiv Detail & Related papers (2024-07-23T13:49:19Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - A Unified Learning Model for Estimating Fiber Orientation Distribution
Functions on Heterogeneous Multi-shell Diffusion-weighted MRI [7.619657591752497]
Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space.
Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal.
We present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function estimation.
arXiv Detail & Related papers (2023-03-29T00:58:18Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z) - Joint Total Variation ESTATICS for Robust Multi-Parameter Mapping [0.0]
ESTATICS performs a joint loglinear fit of multiple echo series to extract R2* and multiple extrapolated intercepts.
We evaluate the proposed algorithm by predicting left-out echoes in a rich single-subject dataset.
arXiv Detail & Related papers (2020-05-28T19:08:42Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.