qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model
- URL: http://arxiv.org/abs/2407.16477v2
- Date: Sat, 12 Oct 2024 11:39:08 GMT
- Title: qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model
- Authors: Shishuai Wang, Hua Ma, Juan A. Hernandez-Tamames, Stefan Klein, Dirk H. J. Poot,
- Abstract summary: Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties.
Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images.
We present qMRI diffuser, a novel approach to qMRI utilising deep generative models.
- Score: 1.1278063431495107
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties. Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images. In this study, we present qMRI Diffuser, a novel approach to qMRI utilising deep generative models. Specifically, we implemented denoising diffusion probabilistic models (DDPM) for T1 quantification in the brain, framing the estimation of quantitative maps as a conditional generation task. The proposed method is compared with the residual neural network (ResNet) and the recurrent inference machine (RIM) on both phantom and in vivo data. The results indicate that our method achieves improved accuracy and precision in parameter estimation, along with superior visual performance. Moreover, our method inherently incorporates stochasticity, enabling straightforward quantification of uncertainty. Hence, the proposed method holds significant promise for quantitative MR mapping.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging [15.408939800451696]
This paper proposes a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models.
DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details.
arXiv Detail & Related papers (2024-05-06T04:36:02Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue.
The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain desired tissue parameter maps from acquired raw data.
We propose PINQI, a novel qMRI reconstruction method that integrates the knowledge about the signal, acquisition model, and learned regularization into a single end-to-end trainable neural network.
arXiv Detail & Related papers (2023-06-19T15:37:53Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
Dynamic computed tomography (CTP) imaging is a promising approach for acute ischemic stroke diagnosis and evaluation.
Hemodynamic parametric maps of cerebral parenchyma are calculated from repeated CT scans of the first pass of iodinated contrast through the brain.
It is necessary to reduce the dose of perfusion for routine applications due to the high radiation exposure from the repeated scans, where image denoising is necessary to achieve a reliable diagnosis.
arXiv Detail & Related papers (2020-05-19T21:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.