3D Anatomical Structure-guided Deep Learning for Accurate Diffusion Microstructure Imaging
- URL: http://arxiv.org/abs/2502.17933v1
- Date: Tue, 25 Feb 2025 07:52:51 GMT
- Title: 3D Anatomical Structure-guided Deep Learning for Accurate Diffusion Microstructure Imaging
- Authors: Xinrui Ma, Jian Cheng, Wenxin Fan, Ruoyou Wu, Yongquan Ye, Shanshan Wang,
- Abstract summary: This paper introduces a novel framework that achieves high-fidelity and rapid diffusion microstructure imaging by simultaneously leveraging anatomical information from macro-level priors and mutual information across parameters.<n> Experimental results demonstrate that our method outperforms four state-of-the-art techniques, achieving a peak signal-to-noise ratio (PSNR) of 30.51$pm$0.58 and a structural similarity index measure (SSIM) of 0.97$pm$0.004 in estimating parametric maps of multiple diffusion models.
- Score: 7.986579222123474
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion magnetic resonance imaging (dMRI) is a crucial non-invasive technique for exploring the microstructure of the living human brain. Traditional hand-crafted and model-based tissue microstructure reconstruction methods often require extensive diffusion gradient sampling, which can be time-consuming and limits the clinical applicability of tissue microstructure information. Recent advances in deep learning have shown promise in microstructure estimation; however, accurately estimating tissue microstructure from clinically feasible dMRI scans remains challenging without appropriate constraints. This paper introduces a novel framework that achieves high-fidelity and rapid diffusion microstructure imaging by simultaneously leveraging anatomical information from macro-level priors and mutual information across parameters. This approach enhances time efficiency while maintaining accuracy in microstructure estimation. Experimental results demonstrate that our method outperforms four state-of-the-art techniques, achieving a peak signal-to-noise ratio (PSNR) of 30.51$\pm$0.58 and a structural similarity index measure (SSIM) of 0.97$\pm$0.004 in estimating parametric maps of multiple diffusion models. Notably, our method achieves a 15$\times$ acceleration compared to the dense sampling approach, which typically utilizes 270 diffusion gradients.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging [15.408939800451696]
This paper proposes a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models.
DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details.
arXiv Detail & Related papers (2024-05-06T04:36:02Z) - Effect of structure-based training on 3D localization precision and
quality [0.0]
This study introduces a structural-based training approach for CNN-based algorithms in single-molecule localization microscopy.
We compare this approach with the traditional random-based training method, utilizing the LUENN package as our AI pipeline.
Our findings highlight the potential of the structural-based training approach to advance super-resolution microscopy.
arXiv Detail & Related papers (2023-09-29T14:17:31Z) - Correlated and Multi-frequency Diffusion Modeling for Highly
Under-sampled MRI Reconstruction [14.687337090732036]
Most existing MRI reconstruction methods perform tar-geted reconstruction of the entire MR image without considering specific tissue regions.
This may fail to emphasize the reconstruction accuracy on im-portant tissues for diagnosis.
In this study, leveraging a combination of the properties of k-space data and the diffusion process, our novel scheme focuses on mining the multi-frequency prior.
arXiv Detail & Related papers (2023-09-02T07:51:27Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Spherical convolutional neural networks can improve brain microstructure
estimation from diffusion MRI data [0.35998666903987897]
Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue.
Estimate clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve.
We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data.
arXiv Detail & Related papers (2022-11-17T20:52:00Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Non-invasive quantitative imaging of selective microstructure-sizes with
magnetic resonance [0.0]
We report on a method that only requires two measurements and its proof-of-principle experiments to produce images of selective microstructure sizes.
We design microstructure-size filters with spin-echo sequences that exploit magnetization "decay-shifts" rather than the commonly used decay-rates.
arXiv Detail & Related papers (2020-06-03T04:15:38Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.