論文の概要: Braced Fourier Continuation and Regression for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2405.03180v1
- Date: Mon, 6 May 2024 06:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:45:09.785166
- Title: Braced Fourier Continuation and Regression for Anomaly Detection
- Title(参考訳): 異常検出のためのブラインドフーリエ継続と回帰
- Authors: Josef Sabuda,
- Abstract要約: Braced Fourier Continuation and Regression (BFCR) の概念が導入されている。
BFCRは、任意の1次元データセットにおいて非線形回帰やトレンド線を見つけるための、新しく、計算的に効率的な方法である。
すべてのソースコードとサンプルデータセットはGitHub経由で参照または利用可能であり、関連するコードはすべてPythonで書かれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, the concept of Braced Fourier Continuation and Regression (BFCR) is introduced. BFCR is a novel and computationally efficient means of finding nonlinear regressions or trend lines in arbitrary one-dimensional data sets. The Braced Fourier Continuation (BFC) and BFCR algorithms are first outlined, followed by a discussion of the properties of BFCR as well as demonstrations of how BFCR trend lines may be used effectively for anomaly detection both within and at the edges of arbitrary one-dimensional data sets. Finally, potential issues which may arise while using BFCR for anomaly detection as well as possible mitigation techniques are outlined and discussed. All source code and example data sets are either referenced or available via GitHub, and all associated code is written entirely in Python.
- Abstract(参考訳): 本研究では, ブラスフーリエ継続回帰(BFCR)の概念を導入する。
BFCRは、任意の1次元データセットにおいて非線形回帰やトレンド線を見つけるための、新しく、計算的に効率的な方法である。
Braced Fourier Continuation (BFC) と BFCR のアルゴリズムが最初に概説され、続いてBFCRの特性に関する議論と、任意の1次元データセットのエッジ内およびエッジにおいて、BFCR のトレンド線を効果的に検出する方法の実証が行われた。
最後に, 異常検出にBFCRを用いた場合の潜在的な問題点と緩和技術について概説する。
すべてのソースコードとサンプルデータセットはGitHub経由で参照または利用可能であり、関連するコードはすべてPythonで書かれている。
関連論文リスト
- Machine Learning Techniques for Data Reduction of CFD Applications [10.881548113461493]
本稿では,科学的結果の低減に相関を利用した保証ブロックオートエンコーダを提案する。
入力と出力の両方にテンソルの多次元ブロック(CFD)を使用する。
論文 参考訳(メタデータ) (2024-04-28T04:01:09Z) - Iterative Sketching for Secure Coded Regression [66.53950020718021]
分散線形回帰を高速化する手法を提案する。
具体的には、方程式の系の基礎をランダムに回転させ、次にサブサンプルブロックを回転させ、情報を同時に確保し、回帰問題の次元を小さくする。
論文 参考訳(メタデータ) (2023-08-08T11:10:42Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
逆問題の文脈における後部分布の補正近似を改善するための反復的枠組みを提案する。
そこで我々は,本手法をスタイリング問題に適用して制御条件で検証し,改良された後部近似を各繰り返しで観察する。
論文 参考訳(メタデータ) (2023-05-15T15:47:19Z) - GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
Problems with Denoising Diffusion Restoration [64.8770356696056]
本稿では,DDRM(Denoising Diffusion Restoration Models)の拡張であるGibbsDDRMを提案する。
提案手法は問題に依存しないため,様々な逆問題に対して事前学習した拡散モデルを適用することができる。
論文 参考訳(メタデータ) (2023-01-30T06:27:48Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
時系列データ間の因果関係の発見は、症状の原因の診断に役立つ。
本稿では,2つの部分から構成される新しいシステムを提案する。第1部はガウスプロセス回帰を,第2部はエコー状態ネットワークを活用する。
本稿では,対応するマシューズ相関係数 (MCC) と受信器動作特性曲線 (ROC) について報告する。
論文 参考訳(メタデータ) (2022-01-09T05:55:47Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Circular-Symmetric Correlation Layer based on FFT [11.634729459989996]
連続群 $S1 times mathbbR$ 上のロト変換同変相関の形式性に基づく円対称相関層 (CCL) を提案する。
各種の認識・分類タスク・データセットに対して,CCLを組み込んだ汎用ネットワークの性能解析を行った。
論文 参考訳(メタデータ) (2021-07-26T21:06:20Z) - Model-based multi-parameter mapping [0.0]
定量的MRイメージングは、よりリッチな情報の内容と標準化された測定基準のためにますます好まれている。
推定はしばしば、異なる量のデータを分離して解くために、データのノイズサブセットを仮定する。
代わりに、生成モデルは定式化され、パラメータ推定を共同で回復するために反転することができる。
論文 参考訳(メタデータ) (2021-02-02T17:00:11Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
本稿では,入力データと出力データとの対応が不十分な回帰問題について考察する。
ほとんどの既存手法はサンプルサイズが小さい場合にのみ適用できる。
シャッフル回帰問題に対する新しい計算フレームワークであるROBOTを提案する。
論文 参考訳(メタデータ) (2020-11-30T21:47:38Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。