論文の概要: Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning
- arxiv url: http://arxiv.org/abs/2405.03279v3
- Date: Fri, 04 Oct 2024 12:29:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 18:20:15.174405
- Title: Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning
- Title(参考訳): 検索型連続プロンプト学習によるLLMの生涯知識編集
- Authors: Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, Hui Xue,
- Abstract要約: 本稿では,生涯学習における編集効率と推論効率を向上させるために,ContInuous Prompt lEarning法であるRECIPEを紹介する。
RECIPEはまず、知識文をLLMの入力クエリの埋め込みにプレフィックスした、短くて情報的な連続的なプロンプトに変換する。
さらに、動的しきい値を計算するために仲介役として機能する知識センチネル(KS)を統合する。
我々のレトリバーとプロンプトエンコーダは、信頼性、一般性、局所性といった編集特性を達成するために共同で訓練されている。
- 参考スコア(独自算出の注目度): 30.554641380670315
- License:
- Abstract: Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM's input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.
- Abstract(参考訳): モデル編集は、大規模言語モデル(LLM)における古い知識や誤った知識を、コストのかかる再トレーニングを必要とせずに修正することを目的としている。
LLMの継続的な編集要件を満たす最も難しいタスクは、生涯モデル編集である。
それにもかかわらず、これらの手法は破滅的な知識の忘れとモデル性能の劣化により、生涯にわたる編集シナリオでは不足している。
検索に基づく手法はこれらの問題を緩和するが、検索した知識をモデルに組み込むのが遅くて面倒なプロセスによって妨げられる。
本研究では,RetriEval-augmented ContInuous Prompt lEarning法であるRECIPEを導入し,生涯学習における編集効率と推論効率を向上させる。
RECIPEはまず、知識文をLLMの入力クエリを埋め込んだ短い情報的連続的なプロンプトに変換し、知識に基づく応答を効率的に洗練する。
さらに、動的しきい値を計算する仲介役として機能する知識センタネル(KS)を統合し、検索リポジトリに関連する知識が含まれているかどうかを判断する。
我々のレトリバーとプロンプトエンコーダは、編集特性、すなわち信頼性、一般性、局所性を達成するために共同で訓練されている。
我々の実験では、RECIPEは複数のLCMにまたがって広範囲に評価され、編集性能が向上する。
RECIPEはまた、高速な編集と推論速度を示すとともに、LLMの全体的な性能を維持する能力を示している。
関連論文リスト
- Time Sensitive Knowledge Editing through Efficient Finetuning [35.79991957163508]
大きな言語モデル(LLM)は、様々なタスクにおいて印象的な能力を示し、多くのドメインに変革をもたらす。
LLMの知識を最新に保つことは、事前トレーニングが完了するまで、依然として課題である。
既存の位置と編集の知識編集(KE)手法には2つの制限がある。
論文 参考訳(メタデータ) (2024-06-06T20:41:36Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
本稿では,大規模言語モデルに新たな知識を入力問題に適用する学習 to LTE(Learning to Edit)フレームワークを提案する。
LTEには2段階のプロセスがある: (i) アライメントフェーズ(アライメントフェーズ)。
LTEの知識編集性能の優位性、バッチおよびシーケンシャルな編集の堅牢性、一般的なタスクに対する最小限の干渉、高速な編集速度を示す。
論文 参考訳(メタデータ) (2024-02-19T07:45:17Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
大型言語モデル(LLM)はコミュニケーションAIの構築において重要な役割を担っているが、効率的な更新の課題に直面している。
この研究は、編集方法の長所と短所を理解し、コミュニケーション型AIの実践的応用を促進することを目的としている。
論文 参考訳(メタデータ) (2024-02-08T17:06:45Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLMは、大規模言語モデルの知識編集を評価するための新しいベンチマークである。
実験結果から, 生文書を用いた知識編集手法は, 良好な結果を得るには有効ではないことが示唆された。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。