論文の概要: Lifelong Knowledge Editing for Vision Language Models with Low-Rank Mixture-of-Experts
- arxiv url: http://arxiv.org/abs/2411.15432v1
- Date: Sat, 23 Nov 2024 03:19:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:05.151491
- Title: Lifelong Knowledge Editing for Vision Language Models with Low-Rank Mixture-of-Experts
- Title(参考訳): 低ランク混合実験による視覚言語モデルの生涯知識編集
- Authors: Qizhou Chen, Chengyu Wang, Dakan Wang, Taolin Zhang, Wangyue Li, Xiaofeng He,
- Abstract要約: 我々は、生涯LLM編集とビジョンLLM編集のギャップを埋めるために、LIfelong Vision言語modEl EditのLiveEditを提案する。
ビジュアルセマンティック知識を活用するためにハードフィルタリング機構を開発し、入力クエリの視覚的に無関係な専門家を排除した。
視覚的に関係のある専門家を統合するために,テキストの意味的関連性に基づくソフトルーティング機構を導入し,マルチエキスパート融合を実現する。
- 参考スコア(独自算出の注目度): 17.376346967267327
- License:
- Abstract: Model editing aims to correct inaccurate knowledge, update outdated information, and incorporate new data into Large Language Models (LLMs) without the need for retraining. This task poses challenges in lifelong scenarios where edits must be continuously applied for real-world applications. While some editors demonstrate strong robustness for lifelong editing in pure LLMs, Vision LLMs (VLLMs), which incorporate an additional vision modality, are not directly adaptable to existing LLM editors. In this paper, we propose LiveEdit, a LIfelong Vision language modEl Edit to bridge the gap between lifelong LLM editing and VLLMs. We begin by training an editing expert generator to independently produce low-rank experts for each editing instance, with the goal of correcting the relevant responses of the VLLM. A hard filtering mechanism is developed to utilize visual semantic knowledge, thereby coarsely eliminating visually irrelevant experts for input queries during the inference stage of the post-edited model. Finally, to integrate visually relevant experts, we introduce a soft routing mechanism based on textual semantic relevance to achieve multi-expert fusion. For evaluation, we establish a benchmark for lifelong VLLM editing. Extensive experiments demonstrate that LiveEdit offers significant advantages in lifelong VLLM editing scenarios. Further experiments validate the rationality and effectiveness of each module design in LiveEdit.
- Abstract(参考訳): モデル編集は、不正確な知識を訂正し、古い情報を更新し、再トレーニングなしに新しいデータをLLM(Large Language Models)に組み込むことを目的としている。
このタスクは、現実世界のアプリケーションに編集を継続的に適用しなければならない、生涯にわたるシナリオで課題を提起する。
一部のエディタは、純粋なLLMにおいて、生涯の編集に強い堅牢性を示すが、視覚モダリティを付加したVision LLM(VLLM)は、既存のLLMエディタには直接適応できない。
本稿では、生涯LLM編集とVLLMのギャップを埋めるLIfelong Vision言語modEl EditのLiveEditを提案する。
まず、編集エキスパートジェネレータを訓練し、各編集インスタンスの低ランクの専門家を独立して生成し、VLLMの関連する応答を修正することを目標とする。
ビジュアルセマンティック知識を活用するためにハードフィルタリング機構を開発し、後処理モデルの推論段階において、入力クエリに対する視覚的に無関係な専門家を粗く排除する。
最後に、視覚的に関係のある専門家を統合するために、テキストの意味的関連性に基づくソフトルーティング機構を導入し、マルチエキスパート融合を実現する。
評価のために、寿命の長いVLLM編集のためのベンチマークを確立する。
大規模な実験により、LiveEditは生涯にわたるVLLM編集シナリオにおいて大きなアドバンテージを提供することが示された。
さらなる実験は、LiveEditにおける各モジュール設計の合理性と有効性を検証する。
関連論文リスト
- Attribution Analysis Meets Model Editing: Advancing Knowledge Correction in Vision Language Models with VisEdit [18.71195974474024]
我々は、トークン予測のための視覚表現の寄与を測定するために、コントリビューションアロケーションとノイズ摂動法を用いる。
帰属分析により,このプロンプトに非常に関係のある中後期層における視覚的表現が予測に大きく寄与していることが示唆された。
そこで我々はVisEditを提案する。VisEditはVis-LLMsの新しいモデルエディタで、編集プロンプトに重要な領域の中間的な視覚表現を編集することで知識を効果的に修正する。
論文 参考訳(メタデータ) (2024-08-19T11:44:40Z) - Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning [30.554641380670315]
本稿では,生涯学習における編集効率と推論効率を向上させるために,ContInuous Prompt lEarning法であるRECIPEを紹介する。
RECIPEはまず、知識文をLLMの入力クエリの埋め込みにプレフィックスした、短くて情報的な連続的なプロンプトに変換する。
さらに、動的しきい値を計算するために仲介役として機能する知識センチネル(KS)を統合する。
我々のレトリバーとプロンプトエンコーダは、信頼性、一般性、局所性といった編集特性を達成するために共同で訓練されている。
論文 参考訳(メタデータ) (2024-05-06T08:52:11Z) - CodeEditorBench: Evaluating Code Editing Capability of Large Language Models [49.387195629660994]
コードのための大規模言語モデル(LLM)は急速に進化しており、コード編集が重要な機能として現れている。
コード編集タスクにおけるLLMの性能を厳格に評価するための評価フレームワークであるCodeEditorBenchを紹介する。
5つのソースからさまざまなコーディング課題やシナリオをキュレートし、さまざまなプログラミング言語、複雑性レベル、編集タスクをカバーしています。
論文 参考訳(メタデータ) (2024-04-04T15:49:49Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクの進行において重要な要素である。
既存の編集方法は、編集に関連する知識の変化を追跡し、組み込むのに苦労する。
知識グラフを利用した新しいモデル編集手法を提案し,LLM編集の強化,すなわちGLAMEを提案する。
論文 参考訳(メタデータ) (2024-02-21T07:52:26Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
本稿では,大規模言語モデルに新たな知識を入力問題に適用する学習 to LTE(Learning to Edit)フレームワークを提案する。
LTEには2段階のプロセスがある: (i) アライメントフェーズ(アライメントフェーズ)。
LTEの知識編集性能の優位性、バッチおよびシーケンシャルな編集の堅牢性、一般的なタスクに対する最小限の干渉、高速な編集速度を示す。
論文 参考訳(メタデータ) (2024-02-19T07:45:17Z) - LAVE: LLM-Powered Agent Assistance and Language Augmentation for Video
Editing [23.010237004536485]
大きな言語モデル(LLM)は、初心者の障壁を減らすためにビデオ編集ワークフローに統合することができる。
LAVEはLLMを利用したエージェントアシストと言語拡張編集機能を提供する新しいシステムである。
初学者から熟練編集者まで8名の被験者を対象に,LAVEの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:53:11Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
単一の編集でさえモデル崩壊を引き起こし、様々なベンチマークタスクで大幅なパフォーマンス低下を示す。
編集後の大規模言語モデルのベンチマークは、過激な時間とリソース集約である。
我々は、GPT-3.5を用いて、ハードケースに基づいた新しいデータセット、HardEditを開発した。
論文 参考訳(メタデータ) (2024-02-15T01:50:38Z) - Knowledge Editing on Black-box Large Language Models [37.17131278142237]
知識編集は、大きな言語モデル(LLM)の振る舞いを効率的に正確に修正し、特定の知識を更新することを目的としている。
現在の研究は、主にホワイトボックスのLLM編集に焦点を当てており、重要なシナリオであるブラックボックスのLLM編集を見下ろしている。
ブラックボックスLLMにKEを導入し,既存の評価の限界を克服するための総合評価フレームワークを提案する。
2つのベンチマークの実験と分析は、 PostEditがすべてのベースラインを上回り、強力な一般化を実現することを示した。
論文 参考訳(メタデータ) (2024-02-13T17:59:34Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
大型言語モデル(LLM)はコミュニケーションAIの構築において重要な役割を担っているが、効率的な更新の課題に直面している。
この研究は、編集方法の長所と短所を理解し、コミュニケーション型AIの実践的応用を促進することを目的としている。
論文 参考訳(メタデータ) (2024-02-08T17:06:45Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。