Online Clustering of Known and Emerging Malware Families
- URL: http://arxiv.org/abs/2405.03298v1
- Date: Mon, 6 May 2024 09:20:17 GMT
- Title: Online Clustering of Known and Emerging Malware Families
- Authors: Olha Jurečková, Martin Jureček, Mark Stamp,
- Abstract summary: It is essential to categorize malware samples according to their malicious characteristics.
Online clustering algorithms help us to understand malware behavior and produce a quicker response to new threats.
This paper introduces a novel machine learning-based model for the online clustering of malicious samples into malware families.
- Score: 1.2289361708127875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malware attacks have become significantly more frequent and sophisticated in recent years. Therefore, malware detection and classification are critical components of information security. Due to the large amount of malware samples available, it is essential to categorize malware samples according to their malicious characteristics. Clustering algorithms are thus becoming more widely used in computer security to analyze the behavior of malware variants and discover new malware families. Online clustering algorithms help us to understand malware behavior and produce a quicker response to new threats. This paper introduces a novel machine learning-based model for the online clustering of malicious samples into malware families. Streaming data is divided according to the clustering decision rule into samples from known and new emerging malware families. The streaming data is classified using the weighted k-nearest neighbor classifier into known families, and the online k-means algorithm clusters the remaining streaming data and achieves a purity of clusters from 90.20% for four clusters to 93.34% for ten clusters. This work is based on static analysis of portable executable files for the Windows operating system. Experimental results indicate that the proposed online clustering model can create high-purity clusters corresponding to malware families. This allows malware analysts to receive similar malware samples, speeding up their analysis.
Related papers
- Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
In recent years there has been a shift from quantifications-based malware detection towards machine learning.
We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER.
We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space.
arXiv Detail & Related papers (2023-10-03T06:58:45Z) - Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative Matrix Factorization with Automatic Model Selection [34.7994627734601]
We propose a novel hierarchical semi-supervised algorithm, which can be used in the early stages of the malware family labeling process.
With HNMFk, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us to classify malware families under conditions of extreme class imbalance.
Our solution can perform abstaining predictions, or rejection option, which yields promising results in the identification of novel malware families.
arXiv Detail & Related papers (2023-09-12T23:45:59Z) - Classification and Online Clustering of Zero-Day Malware [4.409836695738518]
This paper focuses on the online processing of incoming malicious samples to assign them to existing families or, in the case of samples from new families, to cluster them.
Based on the classification score of the multilayer perceptron, we determined which samples would be classified and which would be clustered into new malware families.
arXiv Detail & Related papers (2023-05-01T00:00:07Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Clustering based opcode graph generation for malware variant detection [1.179179628317559]
We propose a methodology to perform malware detection and family attribution.
The proposed methodology first performs the extraction of opcodes from malwares in each family and constructs their respective opcode graphs.
We explore the use of clustering algorithms on the opcode graphs to detect clusters of malwares within the same malware family.
arXiv Detail & Related papers (2022-11-18T06:12:33Z) - New Datasets for Dynamic Malware Classification [0.0]
We introduce two new, updated datasets of malicious software, VirusSamples and VirusShare.
This paper analyzes multi-class malware classification performance of the balanced and imbalanced version of these two datasets.
Results show that Support Vector Machine, achieves the highest score of 94% in the imbalanced VirusSample dataset.
XGBoost, one of the most common gradient boosting-based models, achieves the highest score of 90% and 80%.in both versions of the VirusShare dataset.
arXiv Detail & Related papers (2021-11-30T08:31:16Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
Malware classification is the task of determining to which family a new malicious variant belongs.
We present DAEMON, a novel dataset-agnostic malware classification tool.
arXiv Detail & Related papers (2020-08-04T21:57:30Z) - Detecting malicious PDF using CNN [46.86114958340962]
Malicious PDF files represent one of the biggest threats to computer security.
We propose a novel algorithm that uses an ensemble of Convolutional Neural Network (CNN) on the byte level of the file.
We show, using a data set of 90000 files downloadable online, that our approach maintains a high detection rate (94%) of PDF malware.
arXiv Detail & Related papers (2020-07-24T18:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.