Delayed Electron-Ion Entanglement Revealed with Zero Area Pulses
- URL: http://arxiv.org/abs/2405.03339v2
- Date: Mon, 8 Jul 2024 09:52:24 GMT
- Title: Delayed Electron-Ion Entanglement Revealed with Zero Area Pulses
- Authors: Axel Stenquist, Jan Marcus Dahlström,
- Abstract summary: The Grobe--Eberly doublet phenomenon occurs in photoelectron distributions when the remaining ion is dressed by a field.
Here, we find that odd (zero-area) envelopes can substantially delay the generation of entanglement.
Our proposed scheme opens up for detection of quantum entanglement, between photoelectrons and stongly-coupled ions, without a need for quantum phase measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Grobe--Eberly doublet phenomenon occurs in photoelectron distributions when the remaining ion is dressed by a field. As was recently shown, the doublet can be interpreted as a signature of quantum entanglement between photoelectrons and strongly coupled ions. However, the dressed state nature of the ion prevents detection of the entanglement by straightforward coincidence detection. Here, we find that odd (zero-area) envelopes can substantially delay the generation of entanglement, but also modify the dynamics such that the doublet transforms into unique channel-resolved photoelectron distributions. Because these distributions can be used to correlate with the internal state of the ion, our proposed scheme opens up for detection of quantum entanglement, between photoelectrons and stongly-coupled ions, without a need for quantum phase measurements.
Related papers
- Photo-induced charge carrier dynamics in a semiconductor-based ion trap
investigated via motion-sensitive qubit transitions [3.90220662841177]
We present a photo-induced charging model for semiconductors, whose verification is enabled by a systematic interaction between trapped ions and photo-induced stray fields.
In contrast to incoherent errors arising from the thermal motion of the ion, coherent errors are induced by the stray field, whose effect is significantly imprinted during the quantum control of the ion.
arXiv Detail & Related papers (2023-11-29T16:19:55Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Continuous variable quantum state tomography of photoelectrons [0.490307469564307]
We propose a continuous variable quantum state tomography protocol of electrons which result from the ionization of atoms or molecules by the absorption of extreme ultraviolet light pulses.
Our protocol is benchmarked against a direct calculation of the quantum state of photoelectrons ejected from helium and argon in the vicinity of a Fano resonance.
arXiv Detail & Related papers (2022-02-14T15:33:24Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Quantum electrodynamics in anisotropic and tilted Dirac photonic
lattices [0.0]
We show how isotropic Dirac-photons can lead to non-exponential spontaneous emission as well as dissipation-less long-range emitter interactions.
In particular, we show how by changing the anisotropy of the lattice one can change both the spatial shape of the interactions as well as its coherent/incoherent nature.
arXiv Detail & Related papers (2021-06-20T19:55:30Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort
X-ray Pulses in Real Time [0.8523919911999691]
Quantum coherence between electronic states of a photoionized molecule and the resulting process of ultrafast electron-hole migration has been put forward as a possible quantum mechanism of charge-directed reactivity governing the photoionization-induced molecular decomposition.
Here, we use x-rays both to create and to directly probe quantum coherence in the photoionized amino acid glycine.
Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by the photoelectron emission from sequential double photoionization.
arXiv Detail & Related papers (2020-12-09T04:06:12Z) - Manipulating Twisted Electrons in Strong-Field Ionization [0.0]
orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization.
We use these twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization.
A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics.
arXiv Detail & Related papers (2020-10-16T12:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.